第99期 dropout防止过拟合

发布于:2025-05-10 ⋅ 阅读:(16) ⋅ 点赞:(0)

import torch
from torch import nn
from d2l import torch as d2l

def dropout_layer(X,dropout):
    assert 0<=dropout<=1
    if dropout==1:
        return torch.zeros_like(X)
    if dropout==0:
        return X
    #mask=(torch.randn(X.shape)>dropout).float() 沐神手快敲错了
    #rand和randn区别:https://blog.csdn.net/wangwangstone/article/details/89815661
    mask = (torch.rand(X.shape) > dropout).float()
    # 这里其实就相当于,在里面随机生成了一个矩阵,值为0-1的均匀分布,取里面大于dropout的值为1,在return中相乘就相当于保留下来,另外
    # dropout概率的那部分会因为不满足“>”号取到false,也就是0,在return中相乘会直接舍去当时的值。
    return mask*X/(1.0-dropout)

'''
便于你理解dropout里面那段函数
A=torch.tensor([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
print(A)
B=torch.rand(A.shape)
print(B)
mask=(torch.rand(A.shape)>0.2).float()
print(mask)
'''

# 测试dropout_layer 函数
def test_dropout_layer():
    X=torch.arange(16,dtype=torch.float32).reshape((2,8))
    print(X)
    print(dropout_layer(X,0))
    print(dropout_layer(X, 0.5))
    print(dropout_layer(X, 1))

test_dropout_layer()


num_inputs,num_outputs,num_hiddens1,num_hiddens2=784,10,256,256
dropout1,dropout2=0.2,0.5

class Net(nn.Module):
    def __init__(self,num_inputs,num_outputs,num_hiddens1,num_hiddens2,is_training=True):
        super(Net,self).__init__()
        self.num_inputs=num_inputs
        self.training=is_training
        self.lin1=nn.Linear(num_inputs,num_hiddens1)
        self.lin2=nn.Linear(num_hiddens1,num_hiddens2)
        self.lin3=nn.Linear(num_hiddens2,num_outputs)
        self.relu=nn.ReLU()

    def forward(self,X):
        H1=self.relu(self.lin1(X.reshape((-1,self.num_inputs))))
        if self.training==True:
            H1=dropout_layer(H1,dropout1)
        H2=self.relu(self.lin2(H1))
        if self.training==True:
            H2=dropout_layer(H2,dropout2)
        out=self.lin3(H2)
        return out

# net=Net(num_inputs,num_outputs,num_hiddens1,num_hiddens2)
#
# num_epochs,lr,batch_size=10,0.5,256
# loss = nn.CrossEntropyLoss()
# train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
# trainer=torch.optim.SGD(net.parameters(),lr=lr)
# d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)
# d2l.plt.show()

# 简洁实现
net=nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(256,256),nn.ReLU(),nn.Dropout(dropout2),nn.Linear(256,10))
def init_weights(m):
    if type(m)==nn.Linear:
        nn.init.normal_(m.weight,std=0.01)

net.apply(init_weights)

num_epochs,lr,batch_size=10,0.5,256
loss = nn.CrossEntropyLoss()
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
trainer=torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)
d2l.plt.show()


网站公告

今日签到

点亮在社区的每一天
去签到