二叉搜索树讲解

发布于:2025-05-11 ⋅ 阅读:(20) ⋅ 点赞:(0)

1. 二叉搜索树的概念

二叉搜索树又称二叉排序树,它或者是一颗空树,或者是具有以下性质的二叉树:

1. 若它的左子树不为空,则左子树上的所有结点的值都小于等于根节点的值。

2. 若它的右子树不为空,则右子树上的所有结点的值都大于等于根节点的值。

3. 它的左右子树也分别为二叉搜索树。

4. 二叉搜索树中可以支持插入相等的值,也可以不支持插入相等的值,具体看使用场景定义。

2. 二叉搜索树的性能分析

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其高度为:log2 N。

最差情况下,二叉搜索树退化为单支树(或者类似单支),其高度为:N。

所以综合而言二叉搜索树增删查改时间复杂度为O(N)。

另外需要说明的是,二分查找也可以实现O(log2N)级别的查找效率,但是二分查找有两大缺陷:

1. 需要存储在支持下标随机访问的结构中,并且有序。

2. 插入和删除数据效率很低,因为存储在下标随机访问的结构中,插入和删除数据一般需要挪动数据。

这里也就体现出了平衡二叉搜索树的价值。

3. 二叉搜索树的插入

插入的具体过程如下:

1. 树为空,则直接新增结点,赋值给root指针。

2. 树不空,按二叉搜索树的性质,插入值比当前结点大往右走,插入值比当前结点小往左走,找到空位置,插入新结点。

3. 如果支持插入相等的值,插入值跟当前结点相等的值可以往右走也可以往左走,找到空位置,插入新结点。(要注意的是要保持逻辑一致性,插入相等的值不要一会往右走,一会往左走)。

我给出的示例代码是不支持插入相等的值的。

bool Insert(const T& key)
{
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}

	Node* cur = _root;
	Node* parent = nullptr;

	while (cur)
	{
		if (key > cur->_key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (key < cur->_key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(key);
	if (key > parent->_key)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}

	return true;
}

4. 二叉搜索树的查找

1. 从根开始比较,查找x,x比根的值大则往右边走查找,比根的值小则往左边走查找。

2. 最多查找高度次,走到空,还没找到,那么就说明这个值不存在。

3. 如果不支持插入相等的值,找到x即可返回。

4. 如果支持插入相等的值,意味着有多个x存在,一般是要求查找中序的第一个x。如下图,查找3,要找到1的右孩子的那个3返回。

bool Find(const T& x)
{
	Node* cur = _root;
	while (cur)
	{
		if (x > cur->_key)
		{
			cur = cur->_right;
		}
		else if (x < cur->_key)
		{
			cur = cur->_left;
		}
		else
		{
			return true;
		}
	}
	return false;
}

5. 二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,直接返回false。

如果查找元素存在,则分为以下四种情况分别处理:(假设要删除的结点为N)

1. N的左右孩子均为空。

2. N左孩子为空,右孩子不为空。

3. N右孩子为空,左孩子不为空。

4. N的左右孩子均不为空

对应以上四种情况的解决方案:

1. 把N结点的父亲对应孩子指针指向空,直接删除N结点。(情况1可以当成情况2或者情况3处理,效果是一样的)

2. 把N结点的父亲对应孩子指针指向右孩子,直接删除N结点。

3. 把N结点的父亲对应孩子指针指向左孩子,直接删除N结点。

4. 无法直接删除N结点,因为N的两个孩子无处安放,只能用替换法删除。找N左子树的值最大结点R(最右结点)或者N右子树的值最小结点R(最左结点)替代N,因为这两个结点中任意一个,放到N的位置,都满足二叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转而变成删除R结点,R结点符合情况2和情况3,可以直接删除。

bool Erase(const T& key)
{
	Node* cur = _root;
	Node* parent = nullptr;
	
	while (cur)
	{
		if (key > cur->_key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (key < cur->_key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			// 开始删除
			if (cur->_left == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_right;
				}
				else
				{
					if (cur == parent->_left)
					{
						parent->_left = cur->_right;
					}
					else
					{
						parent->_right = cur->_right;
					}
				}
				delete cur;
			}
			else if (cur->_right == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_left;
				}
				else
				{
					if (cur == parent->_left)
					{
						parent->_left = cur->_left;
					}
					else
					{
						parent->_right = cur->_left;
					}
				}
				delete cur;
			}
			else
			{
				// 找右子树的最小节点(最左节点)替代
				Node* replace_parent = cur;
				Node* replace = cur->_right;
				while (replace->_left)
				{
					replace_parent = replace;
					replace = replace->_left;
				}
				swap(cur->_key, replace->_key);
				if (replace == replace_parent->_left)
				{
					replace_parent->_left = replace->_right;
				}
				else
				{
					replace_parent->_right = replace->_right;
				}
				delete replace;
			}
			return true;
		}
	}
	return false;
}

6. 完整的实现代码

#include<iostream>

using namespace std;

template<class T>
struct BinarySearchTreeNode
{
	T _key;
	BinarySearchTreeNode<T>* _left;
	BinarySearchTreeNode<T>* _right;

	BinarySearchTreeNode(const T& key)
		:_key(key)
		,_left(nullptr)
		,_right(nullptr)
	{ }
};

template<class T>
class BSTree
{
	typedef BinarySearchTreeNode<T> Node;
public:
	bool Insert(const T& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;

		while (cur)
		{
			if (key > cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(key);
		if (key > parent->_key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		return true;
	}

	bool Find(const T& x)
	{
		Node* cur = _root;
		while (cur)
		{
			if (x > cur->_key)
			{
				cur = cur->_right;
			}
			else if (x < cur->_key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return false;
	}

	bool Erase(const T& key)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		
		while (cur)
		{
			if (key > cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				// 开始删除
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (cur == parent->_left)
						{
							parent->_left = cur->_right;
						}
						else
						{
							parent->_right = cur->_right;
						}
					}
					delete cur;
				}
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (cur == parent->_left)
						{
							parent->_left = cur->_left;
						}
						else
						{
							parent->_right = cur->_left;
						}
					}
					delete cur;
				}
				else
				{
					// 找右子树的最小节点(最左节点)替代
					Node* replace_parent = cur;
					Node* replace = cur->_right;
					while (replace->_left)
					{
						replace_parent = replace;
						replace = replace->_left;
					}
					swap(cur->_key, replace->_key);
					if (replace == replace_parent->_left)
					{
						replace_parent->_left = replace->_right;
					}
					else
					{
						replace_parent->_right = replace->_right;
					}
					delete replace;
				}
				return true;
			}
		}
		return false;
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << ' ';
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	Node* _root = nullptr; 
};

int main()
{
	BSTree<int> tree;
	int arr[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	for (auto& e : arr)
	{
		tree.Insert(e);
	}
	tree.InOrder();

	cout << tree.Find(10) << endl;
	cout << tree.Find(100) << endl;

	tree.Erase(10);
	tree.Erase(6);
	tree.InOrder();

	return 0;
}