十五、Hive 窗口函数

发布于:2025-05-23 ⋅ 阅读:(20) ⋅ 点赞:(0)

作者:IvanCodes
日期:2025年5月22日
专栏:Hive教程

Hive中的窗口函数复杂数据分析提供了强大的支持。它们在不改变原始行数前提下,对与当前行相关“窗口”内数据进行计算。核心在于OVER()子句,它定义窗口的范围(分区、排序、帧)。

思维导图

在这里插入图片描述
在这里插入图片描述

一、核心语法回顾

window_function([args]) OVER ([PARTITION BY cols] [ORDER BY cols [ASC|DESC]] [window_frame])

二、排名函数 (Ranking Functions) 用法与示例

用于为分区内的行分配名次

  • ROW_NUMBER(): 唯一连续排名。
    示例:为每个部门的员工按薪水从高到低编号。
SELECT emp_name, department, salary,
ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary DESC) as rank_in_dept
FROM employees;
  • RANK(): 并列跳号排名。
    示例:同上,但薪水相同者名次相同。
SELECT emp_name, department, salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) as rank_in_dept
FROM employees;
  • DENSE_RANK(): 并列不跳号排名。
    示例:同上,但排名更紧凑。
SELECT emp_name, department, salary,
DENSE_RANK() OVER (PARTITION BY department ORDER BY salary DESC) as dense_rank_in_dept
FROM employees;
  • NTILE(n): 将分区内数据平均分成n个桶,返回桶号。
    示例:将每个部门的员工按薪水分为高、中、低三档。
SELECT emp_name, department, salary,
NTILE(3) OVER (PARTITION BY department ORDER BY salary DESC) as salary_tier
FROM employees;

三、分析函数 (Analytic Functions) / 值函数 (Value Functions) 用法与示例

用于获取窗口内其他行的值

  • LAG(col, offset, default_value): 取当前行分区内排序后向上第offsetcol值。
    示例:计算每位员工当月销售额与上月销售额的比较。
SELECT emp_id, sale_month, sales_amount,
LAG(sales_amount, 1, 0) OVER (PARTITION BY emp_id ORDER BY sale_month) as prev_month_sales
FROM monthly_sales;
  • LEAD(col, offset, default_value): 取当前行分区内排序后向下第offsetcol值。
    示例:预测下一次购买时间。
SELECT user_id, purchase_date,
LEAD(purchase_date, 1) OVER (PARTITION BY user_id ORDER BY purchase_date) as next_purchase_date
FROM purchases;
  • FIRST_VALUE(col): 取当前窗口框架内 第一行col值。
    示例:显示每个部门中薪水最低的员工的薪水。
SELECT emp_name, department, salary,
FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lowest_salary_in_dept
FROM employees;
  • LAST_VALUE(col): 取当前窗口框架内 最后一行col值。
    获取分区真正最后一个值示例
SELECT emp_name, department, salary,
LAST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as highest_salary_in_dept
FROM employees;

四、聚合函数作为窗口函数 (Aggregate Functions as Window Functions) 用法与示例

标准聚合函数 (SUM, AVG, COUNT, MAX, MIN) 可与 OVER() 结合

  • SUM() OVER(...): 累积求和分区总和
    示例1 (分区总和)
SELECT emp_name, department, salary,
SUM(salary) OVER (PARTITION BY department) as total_dept_salary
FROM employees;

示例2 (累积求和)

SELECT emp_name, department, salary, emp_id,
SUM(salary) OVER (PARTITION BY department ORDER BY emp_id ASC ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_salary_by_id
FROM employees;
  • AVG() OVER(...): 移动平均分区平均
    示例 (3日移动平均销售额)
SELECT sale_date, sales_amount,
AVG(sales_amount) OVER (ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) as moving_avg_3day
FROM daily_sales;
  • COUNT() OVER(...): 分区内计数累积计数
    示例
SELECT emp_name, department,
COUNT(*) OVER (PARTITION BY department) as num_employees_in_dept
FROM employees;
  • MAX() OVER(...) / MIN() OVER(...): 分区内最大/最小值
    示例
SELECT emp_name, department, salary,
MAX(salary) OVER (PARTITION BY department) as max_salary_in_dept
FROM employees;

五、窗口帧 (Window Frame Clause) 的详细用法与示例

精确定义聚合计算的行范围,主要与 ORDER BY 配合。
{ROWS | RANGE} BETWEEN frame_start AND frame_end

  • ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: 从分区开始到当前行
    示例 (默认累积行为):计算每个产品按日期顺序的累计销售额。
SELECT product_id, sale_date, sales_amount,
SUM(sales_amount) OVER (PARTITION BY product_id ORDER BY sale_date) as cumulative_sales_default_frame -- 默认即此帧
FROM product_sales;

等同于:

SELECT product_id, sale_date, sales_amount,
SUM(sales_amount) OVER (PARTITION BY product_id ORDER BY sale_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_sales_explicit_frame
FROM product_sales;
  • ROWS BETWEEN N PRECEDING AND CURRENT ROW: 当前行及前N行
    示例 (最近3次活动的平均时长)
SELECT emp_id, activity_date, duration_minutes,
AVG(duration_minutes) OVER (PARTITION BY emp_id ORDER BY activity_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) as avg_duration_last_3_activities
FROM employee_activity;
  • ROWS BETWEEN CURRENT ROW AND N FOLLOWING: 当前行及后N行
    示例 (当前及未来2次访问的总页面数)
SELECT session_id, start_time, pages_viewed,
SUM(pages_viewed) OVER (PARTITION BY user_id ORDER BY start_time ROWS BETWEEN CURRENT ROW AND 2 FOLLOWING) as total_pages_current_and_next_2_sessions
FROM web_sessions;
  • ROWS BETWEEN N PRECEDING AND M FOLLOWING: 当前行前N行到后M行
    示例 (中心化的5日移动平均,当前行为中心)
SELECT sale_date, sales_amount,
AVG(sales_amount) OVER (ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING) as centered_moving_avg_5day
FROM daily_sales;
  • ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING: 整个分区
    示例 (用于 FIRST_VALUE/LAST_VALUE 获取分区首尾值)
SELECT emp_name, department, salary,
FIRST_VALUE(emp_name) OVER (PARTITION BY department ORDER BY salary ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lowest_paid_emp_in_dept,
LAST_VALUE(emp_name) OVER (PARTITION BY department ORDER BY salary ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as highest_paid_emp_in_dept
FROM employees;

RANGE BETWEEN 的说明
基于 ORDER BY 列的值来定义边界。Hive 对 RANGE支持,特别是涉及 INTERVAL 的复杂场景,可能不如其他数据库完善或直观ROWS 通常更常用且行为可预测

总结: Hive 窗口函数通过灵活分区、排序和窗口帧定义,极大增强了SQL在数据分析中表达能力。掌握不同类型函数的特性和组合,是进行深度数据洞察关键


练习题

背景 Hive 表:

表名 字段
product_sales_hive product_id INT, sale_date DATE, sales_amount DECIMAL(10,2), region STRING, category STRING
employee_activity_hive emp_id INT, activity_date DATE, activity_type STRING, duration_minutes INT, department STRING
web_sessions_hive session_id STRING, user_id INT, start_time TIMESTAMP, end_time TIMESTAMP, country STRING

(请自行准备样例数据)

题目:

  1. product_sales_hive 表中每个 category 内的产品,按 sales_amount 从高到低进行 DENSE_RANK() 排名。
  2. 计算 employee_activity_hive 表中每个员工 (emp_id) 的总活动时长 (duration_minutes),并将此总时长显示在该员工的每条活动记录旁。
  3. 对于 product_sales_hive 表,计算每个产品 (product_id) 在每个销售日 (sale_date) 的销售额与该产品上一个销售日的销售额的差额。
  4. 找出 employee_activity_hive 表中每个 department 内,activity_type 为 ‘Meeting’ 且 duration_minutes 最长的前2条记录 (如果并列,选择任意2条)。
  5. 计算 product_sales_hive 表中每个 regionsale_date 升序的累计销售总额。
  6. employee_activity_hive 表中 department = 'Engineering' 的员工,按其在 activity_date 介于 ‘2023-01-01’ 和 ‘2023-03-31’ 之间的总 duration_minutes 分为4个等级 (使用 NTILE(4))。
  7. 对于 web_sessions_hive 表,找出每个用户 (user_id) 当前会话 (session_id) 开始后,其下一个会话的开始时间。
  8. 计算 product_sales_hive 表中每个产品当前销售日期及其前后各1个销售日 (共3个销售日窗口) 的平均销售额,按 region 分区。
  9. employee_activity_hive 表中,找出每个 department 中,duration_minutes 最短的 activity_type (如果多个活动类型时长并列最短,显示一个即可,并显示该时长)。
  10. 对于 product_sales_hive 表,计算每次销售的 sales_amount 占该 product_id 在该 region 总销售额的百分比。

答案:

  1. 分类内产品销售额排名:
SELECT product_id, category, sales_amount,
DENSE_RANK() OVER (PARTITION BY category ORDER BY sales_amount DESC) as rank_in_category
FROM product_sales_hive;
  1. 员工总活动时长:
SELECT emp_id, activity_date, activity_type, duration_minutes,
SUM(duration_minutes) OVER (PARTITION BY emp_id) as total_emp_duration
FROM employee_activity_hive;
  1. 产品日销售额与上一日差额:
SELECT product_id, sale_date, sales_amount,
sales_amount - LAG(sales_amount, 1, 0.0) OVER (PARTITION BY product_id ORDER BY sale_date) as diff_from_prev_day_sales
FROM product_sales_hive;
  1. 部门会议时长Top2记录:
SELECT emp_id, activity_date, duration_minutes, department
FROM (
SELECT emp_id, activity_date, duration_minutes, department,
ROW_NUMBER() OVER (PARTITION BY department ORDER BY duration_minutes DESC) as rn
FROM employee_activity_hive
WHERE activity_type = 'Meeting'
) ranked_meetings
WHERE rn <= 2;
  1. 区域累计销售总额:
SELECT region, sale_date, sales_amount,
SUM(sales_amount) OVER (PARTITION BY region ORDER BY sale_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_region_sales
FROM product_sales_hive;
  1. 工程部员工Q1活动时长等级:
SELECT emp_id, total_q1_duration,
NTILE(4) OVER (ORDER BY total_q1_duration DESC) as duration_tier
FROM (
SELECT emp_id, SUM(duration_minutes) as total_q1_duration
FROM employee_activity_hive
WHERE department = 'Engineering' AND activity_date BETWEEN '2023-01-01' AND '2023-03-31'
GROUP BY emp_id
) emp_q1_durations;
  1. 用户下一个会话开始时间:
SELECT user_id, session_id, start_time,
LEAD(start_time, 1) OVER (PARTITION BY user_id ORDER BY start_time) as next_session_start_time
FROM web_sessions_hive;
  1. 产品区域内3日移动平均销售额:
SELECT product_id, region, sale_date, sales_amount,
AVG(sales_amount) OVER (PARTITION BY product_id, region ORDER BY sale_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as moving_avg_3day_sales
FROM product_sales_hive;
  1. 部门最短活动类型及时长:
SELECT department, activity_type, duration_minutes
FROM (
SELECT department, activity_type, duration_minutes,
ROW_NUMBER() OVER (PARTITION BY department ORDER BY duration_minutes ASC, activity_type ASC) as rn -- activity_type ASC for tie-breaking
FROM employee_activity_hive
) ranked_activities
WHERE rn = 1;
  1. 销售额占产品区域总额百分比:
SELECT product_id, region, sale_date, sales_amount,
sales_amount * 100.0 / SUM(sales_amount) OVER (PARTITION BY product_id, region) as percentage_of_region_sales
FROM product_sales_hive;

网站公告

今日签到

点亮在社区的每一天
去签到