第四十天打卡

发布于:2025-06-08 ⋅ 阅读:(22) ⋅ 点赞:(0)

@浙大疏锦行

训练和测试的规范写法
知识点回顾:
1.彩色和灰度图片测试和训练的规范写法:封装在函数中
2.展平操作:除第一个维度batchsize外全部展平
3.dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, datasets
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
torch.manual_seed(42)
device = torch.device("cuda"if torch.cuda.is_available() else"cpu")
print(device)
 
#1预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081,))
]
)
#2加载数据集
train_dataset = datasets.MNIST(
    root="./data",
    train=True,
    download=True,
    transform=transform
)
test_dataset = datasets.MNIST(
    root="./data",
    train=False,
    download=True,
    transform=transform
)
#3创建数据加载器
batch_size = 64
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=batch_size,
    shuffle=True
)
test_loader = torch.utils.data.DataLoader(
    dataset=test_dataset,
    batch_size=batch_size,
    shuffle=False
)
#4定义模型
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(28*28, 128)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(128, 10)
    
    def forward(self, x):
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x
model = MLP()
model = model.to(device)
 
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
#5训练模型(记录每个iteration的loss)
def train(model, train_loader, test_loader, criterion, optimizer, epochs, device):
    model.train() #设置为训练模式
 
    #记录损失
    all_iter_losses = []   #记录所有batch的loss
    iter_indices = [] #记录每个iteration的索引
 
    for epoch in range(epochs):
        running_loss = 0.0 #记录每个epoch的loss
        correct = 0 #记录每个epoch的correct
        total =0 #记录每个epoch的total
 
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
 
            optimizer.zero_grad()#梯度清零
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
 
            #记录当前iteration的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
 
            #统计准确率和损失
            running_loss += loss.item()
            #`_`来表示我们不关心第一个返回值(即最大值),只关心第二个返回值(即最大值的索引),这个索引就是模型预测的类别。
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
 
            #每100个batch打印一次训练状态
            if (batch_idx + 1) % 100 == 0:
                print(f"Epoch:{epoch + 1}/{epochs}|Batch:{batch_idx + 1}/{len(train_loader)}",
                      f"|单batch损失:{iter_loss:.4f}|累计平均损失:{running_loss/(batch_idx + 1):.4f}|")
        
        #测试,打印结果
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        epoch_test_loss, epoch_test_acc = test(model, test_loader, criterion,device)
        print(f"Epoch{epoch + 1}/{epochs}完成|训练准确率:{epoch_train_acc:.2f}|测试准确率:{epoch_test_acc:.2f}")
 
    #绘制所有iteration损失函数
    plot_iter_losses(all_iter_losses, iter_indices)
 
    return epoch_test_acc
 
#6测试模型
def test(model, test_loader, criterion, device):
    model.eval() # 设置为评估模式
    test_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():#测试时关闭梯度计算
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
    avg_loss = test_loss / len(test_loader)
    accuracy = 100. * correct / total
    return avg_loss, accuracy
#7绘制损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 5))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch)序号')
    plt.ylabel('Loss')
    plt.title('Iteration Loss Curve')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
#8执行训练和测试(epochs=2 验证结果)
epochs = 2
print("开始训练")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, epochs, device)
print(f"训练结束,最终准确率为{final_accuracy:.4f}")    


网站公告

今日签到

点亮在社区的每一天
去签到