这个题目还是比较经典的,题目给的数据量如果是动态规划的思路来写的话刚刚好能过
代码如下:
class Solution:
def jump(self, nums: List[int]) -> int:
n = len(nums)
dp = [inf]*(n)
dp[0] = 0
for i in range(n):
if dp[i] == inf:
continue
for j in range(1,nums[i]+1):
if i+j>=n:
continue
dp[i+j] = min(dp[i+j],dp[i]+1)
return dp[n-1]
如果数据量变大咋办,感觉可以用线段树来优化一下
from math import inf
class Tree:
def __init__(self, n):
self.n = n
self.t = [inf] * (4 * n) # 存储区间最小值
self.lazy = [None] * (4 * n) # 懒标记,初始为None表示没有待下推的值
def push_down(self, o):
if self.lazy[o] is not None:
# 下推懒标记到左右子节点
left = o * 2
right = o * 2 + 1
# 更新左子节点
self.t[left] = min(self.t[left], self.lazy[o])
self.lazy[left] = min(self.lazy[left], self.lazy[o]) if self.lazy[left] is not None else self.lazy[o]
# 更新右子节点
self.t[right] = min(self.t[right], self.lazy[o])
self.lazy[right] = min(self.lazy[right], self.lazy[o]) if self.lazy[right] is not None else self.lazy[o]
# 清除当前节点的懒标记
self.lazy[o] = None
def update(self, o, l, r, L, R, va):
if L <= l and r <= R:
# 完全包含,更新当前节点并设置懒标记
self.t[o] = min(self.t[o], va)
self.lazy[o] = min(self.lazy[o], va) if self.lazy[o] is not None else va
return
# 下推懒标记
self.push_down(o)
mid = (l + r) // 2
if mid >= L:
self.update(o * 2, l, mid, L, R, va)
if mid < R:
self.update(o * 2 + 1, mid + 1, r, L, R, va)
# 更新当前节点的值
self.t[o] = min(self.t[o * 2], self.t[o * 2 + 1])
def query(self, o, l, r, L, R):
if L <= l and r <= R:
return self.t[o]
# 下推懒标记
self.push_down(o)
tmp = inf
mid = (l + r) // 2
if mid >= L:
tmp = min(tmp, self.query(o * 2, l, mid, L, R))
if mid < R:
tmp = min(tmp, self.query(o * 2 + 1, mid + 1, r, L, R))
return tmp
class Solution:
def jump(self, nums: List[int]) -> int:
n = len(nums)
a = Tree(n)
a.update(1,0,n-1,0,0,0)
for i in range(n):
now = a.query(1,0,n-1,i,i)
if now == inf:
continue
a.update(1,0,n-1,i,min(i+nums[i],n-1),now+1)
return a.query(1,0,n-1,n-1,n-1)
如果数据量更大呢,题目保证了一定可以到达n-1,所以我们就可以采取贪心的思路
class Solution:
def jump(self, nums: List[int]) -> int:
ans = 0
cur_right = 0 # 已建造的桥的右端点
next_right = 0 # 下一座桥的右端点的最大值
for i in range(len(nums) - 1):
# 遍历的过程中,记录下一座桥的最远点
next_right = max(next_right, i + nums[i])
if i == cur_right: # 无路可走,必须建桥
cur_right = next_right # 建桥后,最远可以到达 next_right
ans += 1
return ans
怎么理解呢