知识点回顾:
- 通道注意力模块复习
- 空间注意力模块
- CBAM的定义
作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程
import torch
import torch.nn as nn
# 定义通道注意力
class ChannelAttention(nn.Module):
def __init__(self, in_channels, ratio=16):
"""
通道注意力机制初始化
参数:
in_channels: 输入特征图的通道数
ratio: 降维比例,用于减少参数量,默认为16
"""
super().__init__()
# 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息
self.avg_pool = nn.AdaptiveAvgPool2d(1)
# 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征
self.max_pool = nn.AdaptiveMaxPool2d(1)
# 共享全连接层,用于学习通道间的关系
# 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // ratio, bias=False), # 降维层
nn.ReLU(), # 非线性激活函数
nn.Linear(in_channels // ratio, in_channels, bias=False) # 升维层
)
# Sigmoid函数将输出映射到0-1之间,作为各通道的权重
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
前向传播函数
参数:
x: 输入特征图,形状为 [batch_size, channels, height, width]
返回:
调整后的特征图,通道权重已应用
"""
# 获取输入特征图的维度信息,这是一种元组的解包写法
b, c, h, w = x.shape
# 对平均池化结果进行处理:展平后通过全连接网络
avg_out = self.fc(self.avg_pool(x).view(b, c))
# 对最大池化结果进行处理:展平后通过全连接网络
max_out = self.fc(self.max_pool(x).view(b, c))
# 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重
attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
# 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道
return x * attention #这个运算是pytorch的广播机制
# 空间注意力模块
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# 通道维度池化
avg_out = torch.mean(x, dim=1, keepdim=True) # 平均池化:(B,1,H,W)
max_out, _ = torch.max(x, dim=1, keepdim=True) # 最大池化:(B,1,H,W)
pool_out = torch.cat([avg_out, max_out], dim=1) # 拼接:(B,2,H,W)
attention = self.conv(pool_out) # 卷积提取空间特征
return x * self.sigmoid(attention) # 特征与空间权重相乘
## CBAM模块
class CBAM(nn.Module):
def __init__(self, in_channels, ratio=16, kernel_size=7):
super().__init__()
self.channel_attn = ChannelAttention(in_channels, ratio)
self.spatial_attn = SpatialAttention(kernel_size)
def forward(self, x):
x = self.channel_attn(x)
x = self.spatial_attn(x)
return x
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 数据预处理(与原代码一致)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 加载数据集(与原代码一致)
train_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data', train=True, download=True, transform=train_transform)
test_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data', train=False, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义带有CBAM的CNN模型
class CBAM_CNN(nn.Module):
def __init__(self):
super(CBAM_CNN, self).__init__()
# ---------------------- 第一个卷积块(带CBAM) ----------------------
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32) # 批归一化
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.cbam1 = CBAM(in_channels=32) # 在第一个卷积块后添加CBAM
# ---------------------- 第二个卷积块(带CBAM) ----------------------
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.cbam2 = CBAM(in_channels=64) # 在第二个卷积块后添加CBAM
# ---------------------- 第三个卷积块(带CBAM) ----------------------
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.cbam3 = CBAM(in_channels=128) # 在第三个卷积块后添加CBAM
# ---------------------- 全连接层 ----------------------
self.fc1 = nn.Linear(128 * 4 * 4, 512)
self.dropout = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
# 第一个卷积块
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.cbam1(x) # 应用CBAM
# 第二个卷积块
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.cbam2(x) # 应用CBAM
# 第三个卷积块
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x)
x = self.cbam3(x) # 应用CBAM
# 全连接层
x = x.view(-1, 128 * 4 * 4)
x = self.fc1(x)
x = self.relu3(x)
x = self.dropout(x)
x = self.fc2(x)
return x
# 初始化模型并移至设备
model = CBAM_CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import tensorboard
import os
# ======================== TensorBoard 核心配置 ========================
# 在使用tensorboard前需要先指定日志保存路径
log_dir = "runs/cifar10_cnn_exp" # 指定日志保存路径
if os.path.exists(log_dir): #检查刚才定义的路径是否存在
version = 1
while os.path.exists(f"{log_dir}_v{version}"): # 如果路径存在且版本号一致
version += 1 # 版本号加1
log_dir = f"{log_dir}_v{version}" # 如果路径存在,则创建一个新版本
writer = SummaryWriter(log_dir) # 初始化SummaryWriter
print(f"TensorBoard 日志目录: {log_dir}") # 所以第一次是cifar10_cnn_exp、第二次是cifar10_cnn_exp_v1
# 训练函数
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs,writer):
model.train()
global_step = 0 # 全局步骤,用于 TensorBoard 标量记录
# 记录模型结构和训练图像
dataiter = iter(train_loader)
images, labels = next(dataiter)
images = images.to(device)
writer.add_graph(model, images)
img_grid = torchvision.utils.make_grid(images[:8].cpu())
writer.add_image('原始训练图像(增强前)', img_grid, global_step=0)
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
iter_loss = loss.item()
# all_iter_losses.append(iter_loss)
# iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 记录每个 batch 的损失、准确率和学习率
batch_acc = 100. * correct / total
writer.add_scalar('Train/Batch Loss', loss.item(), global_step)
writer.add_scalar('Train/Batch Accuracy', batch_acc, global_step)
writer.add_scalar('Train/Learning Rate', optimizer.param_groups[0]['lr'], global_step)
# 每 200 个 batch 记录一次参数直方图
if (batch_idx + 1) % 200 == 0:
for name, param in model.named_parameters():
writer.add_histogram(f'Weights/{name}', param, global_step)
if param.grad is not None:
writer.add_histogram(f'Gradients/{name}', param.grad, global_step)
global_step += 1
# if (batch_idx + 1) % 100 == 0:
# print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
# f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
writer.add_scalar('Train/Epoch Loss', epoch_train_loss, epoch)
writer.add_scalar('Train/Epoch Accuracy', epoch_train_acc, epoch)
# train_acc_history.append(epoch_train_acc)
# train_loss_history.append(epoch_train_loss)
# 测试阶段
model.eval()
test_loss = 0
correct_test = 0
total_test = 0
wrong_images = []
wrong_labels = []
wrong_preds = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
# 收集错误预测样本
wrong_mask = (predicted != target)
if wrong_mask.sum() > 0:
wrong_batch_images = data[wrong_mask][:8].cpu()
wrong_batch_labels = target[wrong_mask][:8].cpu()
wrong_batch_preds = predicted[wrong_mask][:8].cpu()
wrong_images.extend(wrong_batch_images)
wrong_labels.extend(wrong_batch_labels)
wrong_preds.extend(wrong_batch_preds)
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
writer.add_scalar('Test/Epoch Loss', epoch_test_loss, epoch)
writer.add_scalar('Test/Epoch Accuracy', epoch_test_acc, epoch)
# test_acc_history.append(epoch_test_acc)
# test_loss_history.append(epoch_test_loss)
# 可视化错误预测样本
if wrong_images:
wrong_img_grid = torchvision.utils.make_grid(wrong_images)
writer.add_image('错误预测样本', wrong_img_grid, epoch)
wrong_text = [f"真实: {classes[wl]}, 预测: {classes[wp]}"
for wl, wp in zip(wrong_labels, wrong_preds)]
writer.add_text('错误预测标签', '\n'.join(wrong_text), epoch)
# 更新学习率调度器
scheduler.step(epoch_test_loss)
print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
# plot_iter_losses(all_iter_losses, iter_indices)
# plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
writer.close()
return epoch_test_acc
# 绘图函数
# def plot_iter_losses(losses, indices):
# plt.figure(figsize=(10, 4))
# plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
# plt.xlabel('Iteration(Batch序号)')
# plt.ylabel('损失值')
# plt.title('每个 Iteration 的训练损失')
# plt.legend()
# plt.grid(True)
# plt.tight_layout()
# plt.show()
# def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
# epochs = range(1, len(train_acc) + 1)
# plt.figure(figsize=(12, 4))
# plt.subplot(1, 2, 1)
# plt.plot(epochs, train_acc, 'b-', label='训练准确率')
# plt.plot(epochs, test_acc, 'r-', label='测试准确率')
# plt.xlabel('Epoch')
# plt.ylabel('准确率 (%)')
# plt.title('训练和测试准确率')
# plt.legend()
# plt.grid(True)
# plt.subplot(1, 2, 2)
# plt.plot(epochs, train_loss, 'b-', label='训练损失')
# plt.plot(epochs, test_loss, 'r-', label='测试损失')
# plt.xlabel('Epoch')
# plt.ylabel('损失值')
# plt.title('训练和测试损失')
# plt.legend()
# plt.grid(True)
# plt.tight_layout()
# plt.show()
# 执行训练
# (可选)CIFAR-10 类别名
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
epochs = 20
print("开始使用带CBAM的CNN训练模型...")
print("训练后执行: tensorboard --logdir=runs 查看可视化")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs,writer)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# 保存模型
torch.save(model.state_dict(), 'cifar10_cbam_cnn_model.pth')
print("模型已保存为: cifar10_cbam_cnn_model.pth")