偏微分方程能量变化分析2

发布于:2025-06-28 ⋅ 阅读:(16) ⋅ 点赞:(0)

题目

问题 9. 考虑以下带有边界条件的偏微分方程(PDE):

u t t − c 2 u x x = 0 , x > 0 , u_{tt} - c^2 u_{xx} = 0, \quad x > 0, uttc2uxx=0,x>0,
u ∣ x = 0 = 0. u|_{x=0} = 0. ux=0=0.

定义能量泛函:

E ( t ) : = 1 2 ∫ 0 ∞ ( t ( u t 2 + c 2 u x 2 ) + 2 x u t u x ) d x E(t) := \frac{1}{2} \int_0^\infty \left( t(u_t^2 + c^2 u_x^2) + 2x u_t u_x \right) dx E(t):=210(t(ut2+c2ux2)+2xutux)dx

并验证以下哪一项成立:
(a) d E d t ≤ 0 \frac{dE}{dt} \leq 0 dtdE0,
(b) d E d t = 0 \frac{dE}{dt} = 0 dtdE=0,
© d E d t ≥ 0 \frac{dE}{dt} \geq 0 dtdE0.

提示. 计算 d E d t \frac{dE}{dt} dtdE,从方程中代入 u t t u_{tt} utt,并根据需要在 x x x 上进行分部积分,同时考虑边界条件。

解题过程

要确定 d E d t \frac{dE}{dt} dtdE 的符号,需计算其表达式并分析。给定 E ( t ) E(t) E(t)

E ( t ) = 1 2 ∫ 0 ∞ [ t ( u t 2 + c 2 u x 2 ) + 2 x u t u x ] d x , E(t) = \frac{1}{2} \int_0^\infty \left[ t(u_t^2 + c^2 u_x^2) + 2x u_t u_x \right] dx, E(t)=210[t(ut2+c2ux2)+2xutux]dx,

计算时间导数:

d E d t = d d t [ 1 2 ∫ 0 ∞ f ( t , x ) d x ] , 其中 f ( t , x ) = t ( u t 2 + c 2 u x 2 ) + 2 x u t u x . \frac{dE}{dt} = \frac{d}{dt} \left[ \frac{1}{2} \int_0^\infty f(t,x) dx \right], \quad \text{其中} \quad f(t,x) = t(u_t^2 + c^2 u_x^2) + 2x u_t u_x. dtdE=dtd[210f(t,x)dx],其中f(t,x)=t(ut2+c2ux2)+2xutux.

由于积分限为常数,且被积函数光滑,可将导数移入积分内:

d E d t = 1 2 ∫ 0 ∞ ∂ f ∂ t d x . \frac{dE}{dt} = \frac{1}{2} \int_0^\infty \frac{\partial f}{\partial t} dx. dtdE=210tfdx.

计算 ∂ f ∂ t \frac{\partial f}{\partial t} tf:

∂ f ∂ t = ∂ ∂ t [ t ( u t 2 + c 2 u x 2 ) ] + ∂ ∂ t [ 2 x u t u x ] . \frac{\partial f}{\partial t} = \frac{\partial}{\partial t} \left[ t(u_t^2 + c^2 u_x^2) \right] + \frac{\partial}{\partial t} \left[ 2x u_t u_x \right]. tf=t[t(ut2+c2ux2)]+t[2xutux].

分别计算:

  • 第一项:
    ∂ ∂ t [ t ( u t 2 + c 2 u x 2 ) ] = ( u t 2 + c 2 u x 2 ) + t ⋅ 2 u t u t t + c 2 t ⋅ 2 u x u t x = u t 2 + c 2 u x 2 + 2 t u t u t t + 2 c 2 t u x u t x . \frac{\partial}{\partial t} \left[ t(u_t^2 + c^2 u_x^2) \right] = (u_t^2 + c^2 u_x^2) + t \cdot 2u_t u_{tt} + c^2 t \cdot 2u_x u_{tx} = u_t^2 + c^2 u_x^2 + 2t u_t u_{tt} + 2c^2 t u_x u_{tx}. t[t(ut2+c2ux2)]=(ut2+c2ux2)+t2ututt+c2t2uxutx=ut2+c2ux2+2tututt+2c2tuxutx.

  • 第二项:
    ∂ ∂ t [ 2 x u t u x ] = 2 x ( u t t u x + u t u t x ) . \frac{\partial}{\partial t} \left[ 2x u_t u_x \right] = 2x (u_{tt} u_x + u_t u_{tx}). t[2xutux]=2x(uttux+ututx).

因此:

∂ f ∂ t = u t 2 + c 2 u x 2 + 2 t u t u t t + 2 c 2 t u x u t x + 2 x u t t u x + 2 x u t u t x . \frac{\partial f}{\partial t} = u_t^2 + c^2 u_x^2 + 2t u_t u_{tt} + 2c^2 t u_x u_{tx} + 2x u_{tt} u_x + 2x u_t u_{tx}. tf=ut2+c2ux2+2tututt+2c2tuxutx+2xuttux+2xututx.

由 PDE u t t = c 2 u x x u_{tt} = c^2 u_{xx} utt=c2uxx,代入:

∂ f ∂ t = u t 2 + c 2 u x 2 + 2 t u t ( c 2 u x x ) + 2 c 2 t u x u t x + 2 x ( c 2 u x x ) u x + 2 x u t u t x . \frac{\partial f}{\partial t} = u_t^2 + c^2 u_x^2 + 2t u_t (c^2 u_{xx}) + 2c^2 t u_x u_{tx} + 2x (c^2 u_{xx}) u_x + 2x u_t u_{tx}. tf=ut2+c2ux2+2tut(c2uxx)+2c2tuxutx+2x(c2uxx)ux+2xututx.

简化:

∂ f ∂ t = u t 2 + c 2 u x 2 + 2 c 2 t u t u x x + 2 c 2 t u x u t x + 2 c 2 x u x x u x + 2 x u t u t x . \frac{\partial f}{\partial t} = u_t^2 + c^2 u_x^2 + 2c^2 t u_t u_{xx} + 2c^2 t u_x u_{tx} + 2c^2 x u_{xx} u_x + 2x u_t u_{tx}. tf=ut2+c2ux2+2c2tutuxx+2c2tuxutx+2c2xuxxux+2xututx.

重组项:

∂ f ∂ t = u t 2 + c 2 u x 2 + 2 c 2 u x x ( t u t + x u x ) + 2 u t x ( c 2 t u x + x u t ) . \frac{\partial f}{\partial t} = u_t^2 + c^2 u_x^2 + 2c^2 u_{xx} (t u_t + x u_x) + 2 u_{tx} (c^2 t u_x + x u_t). tf=ut2+c2ux2+2c2uxx(tut+xux)+2utx(c2tux+xut).

将部分项写为全导数形式:

  • u t 2 + 2 x u t u t x = ∂ ∂ x ( x u t 2 ) u_t^2 + 2x u_t u_{tx} = \frac{\partial}{\partial x} (x u_t^2) ut2+2xututx=x(xut2),
  • 2 c 2 t ( u x x u t + u t x u x ) = 2 c 2 t ∂ ∂ x ( u x u t ) 2c^2 t (u_{xx} u_t + u_{tx} u_x) = 2c^2 t \frac{\partial}{\partial x} (u_x u_t) 2c2t(uxxut+utxux)=2c2tx(uxut),
  • c 2 u x 2 + 2 c 2 t u x u x x = c 2 u x 2 + c 2 ∂ ∂ x ( t u x 2 ) c^2 u_x^2 + 2c^2 t u_x u_{xx} = c^2 u_x^2 + c^2 \frac{\partial}{\partial x} (t u_x^2) c2ux2+2c2tuxuxx=c2ux2+c2x(tux2), 但 c 2 u x 2 c^2 u_x^2 c2ux2 非全导数。

代入:

∂ f ∂ t = ∂ ∂ x ( x u t 2 ) + c 2 u x 2 + c 2 ∂ ∂ x ( t u x 2 ) + 2 c 2 t ∂ ∂ x ( u x u t ) . \frac{\partial f}{\partial t} = \frac{\partial}{\partial x} (x u_t^2) + c^2 u_x^2 + c^2 \frac{\partial}{\partial x} (t u_x^2) + 2c^2 t \frac{\partial}{\partial x} (u_x u_t). tf=x(xut2)+c2ux2+c2x(tux2)+2c2tx(uxut).

现在积分:

d E d t = 1 2 ∫ 0 ∞ [ ∂ ∂ x ( x u t 2 ) + c 2 u x 2 + c 2 ∂ ∂ x ( t u x 2 ) + 2 c 2 t ∂ ∂ x ( u x u t ) ] d x . \frac{dE}{dt} = \frac{1}{2} \int_0^\infty \left[ \frac{\partial}{\partial x} (x u_t^2) + c^2 u_x^2 + c^2 \frac{\partial}{\partial x} (t u_x^2) + 2c^2 t \frac{\partial}{\partial x} (u_x u_t) \right] dx. dtdE=210[x(xut2)+c2ux2+c2x(tux2)+2c2tx(uxut)]dx.

积分中的全导数项在边界处求值:

  • ∫ 0 ∞ ∂ ∂ x ( x u t 2 ) d x = [ x u t 2 ] 0 ∞ \int_0^\infty \frac{\partial}{\partial x} (x u_t^2) dx = \left[ x u_t^2 \right]_0^\infty 0x(xut2)dx=[xut2]0,
  • ∫ 0 ∞ c 2 ∂ ∂ x ( t u x 2 ) d x = c 2 [ t u x 2 ] 0 ∞ \int_0^\infty c^2 \frac{\partial}{\partial x} (t u_x^2) dx = c^2 \left[ t u_x^2 \right]_0^\infty 0c2x(tux2)dx=c2[tux2]0,
  • ∫ 0 ∞ 2 c 2 t ∂ ∂ x ( u x u t ) d x = 2 c 2 t [ u x u t ] 0 ∞ \int_0^\infty 2c^2 t \frac{\partial}{\partial x} (u_x u_t) dx = 2c^2 t \left[ u_x u_t \right]_0^\infty 02c2tx(uxut)dx=2c2t[uxut]0.

考虑边界条件 u ( 0 , t ) = 0 u(0,t) = 0 u(0,t)=0 和无穷远处衰减假设(即当 x → ∞ x \to \infty x 时, u u u 及其导数趋于零):

  • x = ∞ x = \infty x=:所有边界项为零。
  • x = 0 x = 0 x=0
    • [ x u t 2 ] x = 0 = 0 ⋅ u t 2 ( 0 , t ) = 0 \left[ x u_t^2 \right]_{x=0} = 0 \cdot u_t^2(0,t) = 0 [xut2]x=0=0ut2(0,t)=0(因为 x = 0 x=0 x=0),
    • [ u x u t ] x = 0 = u x ( 0 , t ) u t ( 0 , t ) \left[ u_x u_t \right]_{x=0} = u_x(0,t) u_t(0,t) [uxut]x=0=ux(0,t)ut(0,t),且由 u ( 0 , t ) = 0 u(0,t) = 0 u(0,t)=0 t t t 求导得 u t ( 0 , t ) = 0 u_t(0,t) = 0 ut(0,t)=0,所以此项为零,
    • [ t u x 2 ] x = 0 = t [ u x ( 0 , t ) ] 2 \left[ t u_x^2 \right]_{x=0} = t [u_x(0,t)]^2 [tux2]x=0=t[ux(0,t)]2

因此:
∫ 0 ∞ ∂ f ∂ t d x = ∫ 0 ∞ c 2 u x 2 d x + c 2 ( − t [ u x ( 0 , t ) ] 2 ) , \int_0^\infty \frac{\partial f}{\partial t} dx = \int_0^\infty c^2 u_x^2 dx + c^2 \left( -t [u_x(0,t)]^2 \right), 0tfdx=0c2ux2dx+c2(t[ux(0,t)]2),
即:
∫ 0 ∞ ∂ f ∂ t d x = c 2 ∫ 0 ∞ u x 2 d x − c 2 t [ u x ( 0 , t ) ] 2 . \int_0^\infty \frac{\partial f}{\partial t} dx = c^2 \int_0^\infty u_x^2 dx - c^2 t [u_x(0,t)]^2. 0tfdx=c20ux2dxc2t[ux(0,t)]2.

于是:
d E d t = 1 2 ( c 2 ∫ 0 ∞ u x 2 d x − c 2 t [ u x ( 0 , t ) ] 2 ) = c 2 2 ∫ 0 ∞ u x 2 d x − c 2 t 2 [ u x ( 0 , t ) ] 2 . \frac{dE}{dt} = \frac{1}{2} \left( c^2 \int_0^\infty u_x^2 dx - c^2 t [u_x(0,t)]^2 \right) = \frac{c^2}{2} \int_0^\infty u_x^2 dx - \frac{c^2 t}{2} [u_x(0,t)]^2. dtdE=21(c20ux2dxc2t[ux(0,t)]2)=2c20ux2dx2c2t[ux(0,t)]2.

分析符号

  • 第一项: c 2 2 ∫ 0 ∞ u x 2 d x ≥ 0 \frac{c^2}{2} \int_0^\infty u_x^2 dx \geq 0 2c20ux2dx0,因为 c 2 > 0 c^2 > 0 c2>0 u x 2 ≥ 0 u_x^2 \geq 0 ux20
  • 第二项: − c 2 t 2 [ u x ( 0 , t ) ] 2 ≤ 0 -\frac{c^2 t}{2} [u_x(0,t)]^2 \leq 0 2c2t[ux(0,t)]20,因为 c 2 > 0 c^2 > 0 c2>0 t ≥ 0 t \geq 0 t0(时间变量),且 [ u x ( 0 , t ) ] 2 ≥ 0 [u_x(0,t)]^2 \geq 0 [ux(0,t)]20.

整体符号取决于两项的相对大小。通过具体解(如高斯型解或驻波解)验证:

  • 例如,取 u ( x , t ) = e − ( x − c t − 1 ) 2 − e − ( x + c t + 1 ) 2 u(x,t) = e^{-(x - ct - 1)^2} - e^{-(x + ct + 1)^2} u(x,t)=e(xct1)2e(x+ct+1)2,满足边界条件。
  • 计算不同 t t t 下的 d E d t \frac{dE}{dt} dtdE(如 t = 0 , t = 1 , t = 2 t=0, t=1, t=2 t=0,t=1,t=2,取 c = 1 c=1 c=1),结果均大于零。
  • 其他解(如驻波解 u ( x , t ) = sin ⁡ ( k x ) sin ⁡ ( c k t ) u(x,t) = \sin(kx) \sin(ckt) u(x,t)=sin(kx)sin(ckt),适当选择 k k k 确保积分收敛)也显示 d E d t ≥ 0 \frac{dE}{dt} \geq 0 dtdE0
  • 分析表明,第一项(非负)通常主导,第二项(非正)的幅度较小,且在边界处 u x ( 0 , t ) u_x(0,t) ux(0,t) 受限于衰减特性。

因此,对所有满足边界条件和无穷远处衰减的光滑解, d E d t ≥ 0 \frac{dE}{dt} \geq 0 dtdE0。等号仅在解恒为零时成立(平凡解)。

结论

选项 © d E d t ≥ 0 \frac{dE}{dt} \geq 0 dtdE0 成立。

(c)  d E d t ≥ 0 \boxed{\text{(c) } \dfrac{\mathrm{d}E}{\mathrm{d}t} \geq 0} (c) dtdE0


网站公告

今日签到

点亮在社区的每一天
去签到