Python训练营-Day42

发布于:2025-07-05 ⋅ 阅读:(18) ⋅ 点赞:(0)

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

import time

import matplotlib.pyplot as plt

from tqdm import tqdm 

import pandas as pd

 

 

data = pd.read_csv(r'data.csv')

 

list_discrete = data.select_dtypes(include=['object']).columns.tolist()

 

home_ownership_mapping = {'Own Home': 1, 'Rent': 2,

                          'Have Mortgage': 3, 'Home Mortgage': 4}

data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

 

years_in_job_mapping = {'< 1 year': 1, '1 year': 2, '2 years': 3, '3 years': 4, '4 years': 5,

                        '5 years': 6, '6 years': 7, '7 years': 8, '8 years': 9, '9 years': 10, '10+ years': 11}

data['Years in current job'] = data['Years in current job'].map(

    years_in_job_mapping)

 

data = pd.get_dummies(data, columns=['Purpose'])

data2 = pd.read_csv(r'data.csv')

list_new = []

for i in data.columns:

    if i not in data2.columns:

        list_new.append(i)

for i in list_new:

    data[i] = data[i].astype(int)

 

term_mapping = {'Short Term': 0, 'Long Term': 1}

data['Term'] = data['Term'].map(term_mapping)

data.rename(columns={'Term': 'Long Term'}, inplace=True)

 

list_continuous = data.select_dtypes(

    include=['int64', 'float64']).columns.tolist()

 

for i in list_continuous:

    median_value = data[i].median()

    data[i] = data[i].fillna(median_value)

 

X = data.drop(['Credit Default'], axis=1)

y = data['Credit Default']

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

 

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

print(f'使用设备: {device}\n')

 

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)

y_train = torch.LongTensor(y_train.values).to(device)

X_test = torch.FloatTensor(X_test).to(device)

y_test = torch.LongTensor(y_test.values).to(device)

 

class MLP_Original(nn.Module):

    def __init__(self):

        super(MLP_Original, self).__init__()

        self.fc1 = nn.Linear(31, 10)

        self.relu = nn.ReLU()

        self.fc2 = nn.Linear(10, 3)

 

    def forward(self, x):

        out = self.fc1(x)

        out = self.relu(out)

        out = self.fc2(out)

        return out

 

class MLP_Larger(nn.Module):

    def __init__(self):

        super(MLP_Larger, self).__init__()

        self.fc1 = nn.Linear(31, 20)

        self.relu = nn.ReLU()

        self.fc2 = nn.Linear(20, 10)

        self.fc3 = nn.Linear(10, 3)

 

    def forward(self, x):

        out = self.fc1(x)

        out = self.relu(out)

        out = self.fc2(out)

        out = self.relu(out)

        out = self.fc3(out)

        return out

 

class MLP_Smaller(nn.Module):

    def __init__(self):

        super(MLP_Smaller, self).__init__()

        self.fc1 = nn.Linear(31, 5)

        self.relu = nn.ReLU()

        self.fc2 = nn.Linear(5, 3)

 

    def forward(self, x):

        out = self.fc1(x)

        out = self.relu(out)

        out = self.fc2(out)

        return out

 

class MLP_Tanh(nn.Module):

    def __init__(self):

        super(MLP_Tanh, self).__init__()

        self.fc1 = nn.Linear(31, 10)

        self.act = nn.Tanh()

        self.fc2 = nn.Linear(10, 3)

 

    def forward(self, x):

        out = self.fc1(x)

        out = self.act(out)

        out = self.fc2(out)

        return out

 

def train_and_evaluate(model_class, optimizer_class, lr, num_epochs=20000):

    model = model_class().to(device)

    criterion = nn.CrossEntropyLoss()

    optimizer = optimizer_class(model.parameters(), lr=lr)

    

    losses = []

    epochs = []

    start_time = time.time()

    

    with tqdm(total=num_epochs, desc=f'训练 {model_class.__name__}', unit='epoch') as pbar:

        for epoch in range(num_epochs):

            outputs = model(X_train)

            loss = criterion(outputs, y_train)

            optimizer.zero_grad()

            loss.backward()

            optimizer.step()

 

            if (epoch + 1) % 200 == 0:

                losses.append(loss.item())

                epochs.append(epoch + 1)

                pbar.set_postfix({'Loss': f'{loss.item():.4f}'})

 

            if (epoch + 1) % 1000 == 0:

                pbar.update(1000)

 

        if pbar.n < num_epochs:

            pbar.update(num_epochs - pbar.n)

 

    time_all = time.time() - start_time

    

    with torch.no_grad():

        outputs = model(X_test)

        _, predicted = torch.max(outputs.data, 1)

        accuracy = (predicted == y_test).sum().item() / y_test.size(0)

    

    print(f'{model_class.__name__} 训练时间: {time_all:.2f}秒, 测试准确率: {accuracy:.4f}\n')

    

    return epochs, losses, accuracy

 

configs = [

    (MLP_Original, optim.SGD, 0.01),

    (MLP_Larger, optim.SGD, 0.01),

    (MLP_Smaller, optim.SGD, 0.01),

    (MLP_Tanh, optim.SGD, 0.01),

    (MLP_Original, optim.Adam, 0.001),

    (MLP_Original, optim.SGD, 0.1),

    (MLP_Original, optim.SGD, 0.001)

]

 

plt.figure(figsize=(12, 8))

for config in configs:

    epochs, losses, accuracy = train_and_evaluate(*config)

    plt.plot(epochs, losses, label=f'{config[0].__name__} {config[1].__name__} lr={config[2]} (Acc:{accuracy:.2f})')

 

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training Loss Comparison with Different Hyperparameters')

plt.legend()

plt.grid(True)

plt.show()

 


网站公告

今日签到

点亮在社区的每一天
去签到