Synchronized锁

发布于:2025-07-08 ⋅ 阅读:(17) ⋅ 点赞:(0)

怎么保证多线程安全?

synchronized关键字:可以使用synchronized关键字来同步代码块或方法,确保同一时刻只有一个线程可以访问这些代码。对象锁是通过synchronized关键字锁定对象的监视器(monitor)来实现的。

public synchronized void someMethod() { /* ... */ }

public void anotherMethod() {

    synchronized (someObject) {

        /* ... */

    }

}

volatile关键字:volatile关键字用于变量,确保所有线程看到的是该变量的最新值,而不是可能存储在本地寄存器中的副本。

public volatile int sharedVariable;

保证内存可见性和禁止指令重排序问题

内存可见性:强制cpu读取内存的操作而不是寄存器

禁止指令重排序:执行votaile语句时,前面的语句都执行完,后面的语句都未执行

Lock接口和ReentrantLock类:java.util.concurrent.locks.Lock接口提供了比synchronized更强大的锁定机制,ReentrantLock是一个实现该接口的例子,提供了更灵活的锁管理和更高的性能。

private final ReentrantLock lock = new ReentrantLock();

public void someMethod() {

    lock.lock();

    try {

        /* ... */

    } finally {

        lock.unlock();

    }

}

原子类:Java并发库(java.util.concurrent.atomic)提供了原子类,如AtomicInteger、AtomicLong等,这些类提供了原子操作,可以用于更新基本类型的变量而无需额外的同步。

示例:

AtomicInteger counter = new AtomicInteger(0);

int newValue = counter.incrementAndGet();

线程局部变量:ThreadLocal类可以为每个线程提供独立的变量副本,这样每个线程都拥有自己的变量,消除了竞争条件。

ThreadLocal<Integer> threadLocalVar = new ThreadLocal<>();

threadLocalVar.set(10);

int value = threadLocalVar.get();

并发集合:使用java.util.concurrent包中的线程安全集合,如ConcurrentHashMap、ConcurrentLinkedQueue等,这些集合内部已经实现了线程安全的逻辑。

JUC工具类: 使用java.util.concurrent包中的一些工具类可以用于控制线程间的同步和协作。例如:Semaphore和CyclicBarrier等。

Java中有哪些常用的锁,在什么场景下使用?

Java中的锁是用于管理多线程并发访问共享资源的关键机制。锁可以确保在任意给定时间内只有一个线程可以访问特定的资源,从而避免数据竞争和不一致性。Java提供了多种锁机制,可以分为以下几类:

内置锁(synchronized):Java中的synchronized关键字是内置锁机制的基础,可以用于方法或代码块。当一个线程进入synchronized代码块或方法时,它会获取关联对象的锁;当线程离开该代码块或方法时,锁会被释放。如果其他线程尝试获取同一个对象的锁,它们将被阻塞,直到锁被释放。其中,syncronized加锁时有无锁、偏向锁、轻量级锁和重量级锁几个级别。偏向锁用于当一个线程进入同步块时,如果没有任何其他线程竞争,就会使用偏向锁,以减少锁的开销。轻量级锁使用线程栈上的数据结构,避免了操作系统级别的锁。重量级锁则涉及操作系统级的互斥锁。

ReentrantLock:java.util.concurrent.locks.ReentrantLock是一个显式的锁类,提供了比synchronized更高级的功能,如可中断的锁等待、定时锁等待、公平锁选项等。ReentrantLock使用lock()和unlock()方法来获取和释放锁。其中,公平锁按照线程请求锁的顺序来分配锁,保证了锁分配的公平性,但可能增加锁的等待时间。非公平锁不保证锁分配的顺序,可以减少锁的竞争,提高性能,但可能造成某些线程的饥饿。

读写锁(ReadWriteLock):java.util.concurrent.locks.ReadWriteLock接口定义了一种锁,允许多个读取者同时访问共享资源,但只允许一个写入者。读写锁通常用于读取远多于写入的情况,以提高并发性。

乐观锁和悲观锁:悲观锁(Pessimistic Locking)通常指在访问数据前就锁定资源,假设最坏的情况,即数据很可能被其他线程修改。synchronized和ReentrantLock都是悲观锁的例子。

乐观锁(Optimistic Locking)通常不锁定资源,而是在更新数据时检查数据是否已被其他线程修改。乐观锁常使用版本号或时间戳来实现。

自旋锁:自旋锁是一种锁机制,线程在等待锁时会持续循环检查锁是否可用,而不是放弃CPU并阻塞。通常可以使用CAS来实现。这在锁等待时间很短的情况下可以提高性能,但过度自旋会浪费CPU资源。

synchronized和reentrantlock及其应用场景?

synchronized 工作原理

使用synchronized之后,会在编译之后在同步的代码块前后加上monitorenter和monitorexit字节码指令,他依赖操作系统底层互斥锁实现。他的作用主要就是实现原子性操作和解决共享变量的内存可见性问题。

执行monitorenter指令时会尝试获取对象锁,如果对象没有被锁定或者已经获得了锁,锁的计数器+1。此时其他竞争锁的线程则会进入等待队列中。执行monitorexit指令时则会把计数器-1,当计数器值为0时,则锁释放,处于等待队列中的线程再继续竞争锁。

Reentrantlock工作原理

ReentrantLock 的底层实现主要依赖于 AbstractQueuedSynchronizer(AQS)这个抽象类。AQS 是一个提供了基本同步机制的框架,其中包括了队列、状态值等。

ReentrantLock 在 AQS 的基础上通过内部类 Sync 来实现具体的锁操作。不同的 Sync 子类实现了公平锁和非公平锁的不同逻辑:

设置超时时间: ReentrantLock 支持在尝试获取锁时设置超时时间,即等待一定时间后如果还未获得锁,则放弃锁的获取。这是通过内部的 tryAcquireNanos 方法来实现的。

公平锁和非公平锁: 在直接创建 ReentrantLock 对象时,默认情况下是非公平锁。公平锁是按照线程等待的顺序来获取锁,而非公平锁则允许多个线程在同一时刻竞争锁,不考虑它们申请锁的顺序。公平锁可以通过在创建 ReentrantLock 时传入 true 来设置,例如:

ReentrantLock fairLock = new ReentrantLock(true);

可重入性: ReentrantLock 支持可重入性,即同一个线程可以多次获得同一把锁,而不会造成死锁。这是通过内部的 holdCount 计数来实现的。当一个线程多次获取锁时,holdCount 递增,释放锁时递减,只有当 holdCount 为零时,其他线程才有机会获取锁。

synchronized和reentrantlock区别?

synchronized 和 ReentrantLock 都是 Java 中提供的可重入锁:

用法不同:synchronized 可用来修饰普通方法、静态方法和代码块,而 ReentrantLock 只能用在代码块上。

获取锁和释放锁方式不同:synchronized 会自动加锁和释放锁,当进入 synchronized 修饰的代码块之后会自动加锁,当离开 synchronized 的代码段之后会自动释放锁。而 ReentrantLock 需要手动加锁和释放锁

锁类型不同:synchronized 属于非公平锁,而 ReentrantLock 既可以是公平锁也可以是非公平锁。

底层实现不同:synchronized 是 JVM 层面通过监视器实现的,而 ReentrantLock 是基于 AQS 实现的

怎么理解可重入锁?

可重入锁是指同一个线程在获取了锁之后,可以再次重复获取该锁而不会造成死锁或其他问题。当一个线程持有锁时,如果再次尝试获取该锁,就会成功获取而不会被阻塞。

ReentrantLock实现可重入锁的机制是基于线程持有锁的计数器。

当一个线程第一次获取锁时,计数器会加1,表示该线程持有了锁。在此之后,如果同一个线程再次获取锁,计数器会再次加1。每次线程成功获取锁时,都会将计数器加1。

当线程释放锁时,计数器会相应地减1。只有当计数器减到0时,锁才会完全释放,其他线程才有机会获取锁。

这种计数器的设计使得同一个线程可以多次获取同一个锁,而不会造成死锁或其他问题。每次获取锁时,计数器加1;每次释放锁时,计数器减1。只有当计数器减到0时,锁才会完全释放。

ReentrantLock通过这种计数器的方式,实现了可重入锁的机制。它允许同一个线程多次获取同一个锁,并且能够正确地处理锁的获取和释放,避免了死锁和其他并发问题。

synchronized 支持重入吗?如何实现的?

synchronized是基于原子性的内部锁机制,是可重入的

synchronized底层是利用计算机系统mutex Lock实现的。每一个可重入锁都会关联一个线程ID和一个锁状态status。

当一个线程请求方法时,会去检查锁状态。

如果锁状态是0,代表该锁没有被占用,使用CAS操作获取锁,将线程ID替换成自己的线程ID。

如果锁状态不是0,代表有线程在访问该方法。此时,如果线程ID是自己的线程ID,如果是可重入锁,会将status自增1,然后获取到该锁,进而执行相应的方法;如果是非重入锁,就会进入阻塞队列等待。

在释放锁时,

如果是可重入锁的,每一次退出方法,就会将status减1,直至status的值为0,最后释放该锁。

如果非可重入锁的,线程退出方法,直接就会释放该锁。

syncronized锁升级的过程讲一下

具体的锁升级的过程是:无锁->偏向锁->轻量级锁->重量级锁。

无锁:这是没有开启偏向锁的时候的状态,在JDK1.6之后偏向锁的默认开启的,但是有一个偏向延迟,需要在JVM启动之后的多少秒之后才能开启,这个可以通过JVM参数进行设置,同时是否开启偏向锁也可以通过JVM参数设置。

偏向锁:初次执行到synchronized代码块的时候,锁对象变成偏向锁(通过CAS修改对象头里的锁标志位),字面意思是“偏向于第一个获得它的线程”的锁。执行完同步代码块后,线程并不会主动释放偏向锁。当第二次到达同步代码块时,线程会判断此时持有锁的线程是否就是自己(持有锁的线程ID也在对象头里),如果是则正常往下执行。由于之前没有释放锁,这里也就不需要重新加锁。

轻量级锁:轻量级锁是指当锁是偏向锁的时候,却被另外的线程所访问,此时偏向锁就会升级为轻量级锁

重量级锁:如果锁竞争情况严重,某个达到最大自旋次数的线程,会将轻量级锁升级为重量级锁

了解完 4 种锁状态之后,我们就可以整体的来看一下锁升级的过程了。  

JVM对Synchornized的优化?

synchronized 核心优化方案主要包含以下 4 个:

锁膨胀:synchronized 从无锁升级到偏向锁,再到轻量级锁,最后到重量级锁的过程,它叫做锁膨胀也叫做锁升级

锁消除:指的是在某些情况下,JVM 虚拟机如果检测不到某段代码被共享和竞争的可能性,就会将这段代码所属的同步锁消除掉,从而到底提高程序性能的目的。

锁粗化将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。


网站公告

今日签到

点亮在社区的每一天
去签到