中医辨证法在Python中的应用
中医辨证法在Python中的应用通常涉及数据分析、自然语言处理(NLP)或规则引擎的实现。以下是常见辨证方法的实例方向和代码片段示例,可用于构建更复杂的系统。
八纲辨证示例(寒热虚实)
通过症状输入判断寒热属性:
def cold_hot_pattern(symptoms):
cold_signs = ["畏寒", "四肢冷", "喜热饮"]
hot_signs = ["发热", "口渴", "喜冷饮"]
cold_score = sum(1 for s in symptoms if s in cold_signs)
hot_score = sum(1 for s in symptoms if s in hot_signs)
return "寒证" if cold_score > hot_score else "热证" if hot_score > cold_score else "寒热错杂"
脏腑辨证示例(心气虚)
使用字典匹配脏腑症状组合:
organ_patterns = {
"心气虚": ["心悸", "气短", "自汗"],
"肝郁气滞": ["胁痛", "抑郁", "脉弦"]
}
def diagnose_organ(symptoms):
for pattern, signs in organ_patterns.items():
if all(s in symptoms for s in signs[:2]):
return pattern
return "未明确辨证"
六经辨证(伤寒论)
基于规则判断太阳病:
def taiyang_disease(symptoms):
required = ["恶寒", "发热", "脉浮"]
optional = ["头痛", "项强"]
return "太阳病" if all(x in symptoms for x in required) and any(x in symptoms for x in optional)
气血津液辨证
气虚判断逻辑:
qi_deficiency = {
"主要症状": ["乏力", "气短"],
"次要症状": ["自汗", "舌淡"]
}
def check_qi_deficiency(symptoms):
main_match = sum(1 for s in symptoms if s in qi_deficiency["主要症状"])
minor_match = sum(1 for s in symptoms if s in qi_deficiency["次要症状"])
return main_match >= 1 and minor_match >= 2
数据驱动辨证实现
使用Pandas分析症状数据集:
import pandas as pd
# 假设df包含症状和辨证结果列
df = pd.read_csv("tcm_data.csv")
def pattern_by_statistics(symptoms):
matched = df[df['symptoms'].apply(lambda x: all(s in x.split(',') for s in symptoms))]
return matched['pattern'].mode()[0] if not matched.empty else "未知"
NLP辨证系统框架
构建简单的症状关键词分类器:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
# 示例训练数据
texts = ["畏寒 腹泻 舌白", "面红 发热 口渴"]
labels = ["寒证", "热证"]
vectorizer = TfidfVectorizer(tokenizer=lambda x: x.split())
X = vectorizer.fit_transform(texts)
clf = LinearSVC().fit(X, labels)
def predict_pattern(text_input):
return clf.predict(vectorizer.transform([text_input]))[0]
注意事项
- 实际中医辨证需结合脉诊、舌诊等综合信息
- 复杂辨证建议使用知识图谱技术
- 临床验证的辨证规则比纯数据驱动更可靠
完整项目通常需要结合:
- 症状权重计算(如主症/次症)
- 辨证规则树(决策树或专家系统)
- 中医古籍文献的结构化处理
自学中医学与Rust编程实例
以下是通过Rust编程语言实现中医学相关功能的示例,涵盖数据处理、算法应用和知识管理等方面。
中医基础理论模型
Rust结构体表示中医基础概念:
struct TCMTheory {
yin_yang: String,
five_elements: Vec<String>,
meridians: HashMap<String, Vec<String>>,
}
impl TCMTheory {
fn new() -> Self {
Self {
yin_yang: "阴阳平衡".to_string(),
five_elements: vec!["木","火","土","金","水"].into_iter().map(|s| s.to_string()).collect(),
meridians: HashMap::from([
("肝经".to_string(), vec!["太冲".to_string(),"期门".to_string()]),
("肺经".to_string(), vec!["中府".to_string(),"尺泽".to_string()])
])
}
}
}
穴位数据库系统
使用Rust构建穴位查询系统:
#[derive(Debug)]
struct Acupoint {
name: String,
meridian: String,
location: String,
functions: Vec<String>
}
fn load_acupoints() -> Vec<Acupoint> {
vec![
Acupoint {
name: "足三里".to_string(),
meridian: "胃经".to_string(),
location: "小腿外侧".to_string(),
functions: vec!["健脾","和胃".to_string()]
},
Acupoint {
name: "合谷".to_string(),
meridian: "大肠经".to_string(),
location: "手背".to_string(),
functions: vec!["止痛","解表".to_string()]
}
]
}