【数据结构取经之路】队列&循环队列

发布于:2024-03-28 ⋅ 阅读:(14) ⋅ 点赞:(0)

目录

引言

队列的性质

队列的基本操作

初始化

判空

销毁

队列的长度

插入

删除

返回队头元素

循环队列

假溢出

空与满的判定

实现 

初始化

插入

判空

销毁

删除

返回队列长度

返回队列头元素

判满


引言

队列和栈一样,也是数据结构的一种,可以用数组实现,也可以用链表实现。它常用于各种应用程序中,包括操作系统、网络通信等。一个最典型的例子就是操作系统中的作业排队。在允许多道程序运行的计算机系统中,同时有几个作业运行。如果运行的结果多需要通过通道输出,那就要按请求输出的先后顺序排队。每当通道传输完毕可以接受新的输出任务时,队头的作业先从队列中退出作输出操作。

队列的性质

队列的性质与栈相反,它是一种“先进先出”的线性表。它只允许在队列的一端进行插入,在另一端进行删除。允许插入的一端叫队尾,允许删除的一端叫队头。

队列的基本操作

队列的操作和栈的操作类似,下面将以链式队列为例,逐一讲解各个操作。因为是用单链表实现队列,如果仅仅记录队头,那么在插入数据时必须得遍历一遍链表,找到队列的尾,才能链接上新的结点,这是一个不小的消耗,所以,除了对链表的结点封装成一个结构体(A)外,还可以再封装一个结构体(B),B结构体成员里包含结构体A。这么说很抽象,还是看代码吧!

typedef int QueueDataType;

typedef struct QueueNode
{
	QueueDataType data;
	struct QueueNode* next;
}QueueNode;

typedef struct Queue
{
	QueueNode* phead;//指向链表头
	QueueNode* ptail;//指向链表尾
	int size;//记录长度
}Queue;

这样就方便对队列进行维护了。

初始化

初始化时,可以malloc出一些空间给队列,也可以不用,等到插入时再开辟空间也行,都无可厚非,我这里选择后者。

代码:


void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = NULL;
	pq->ptail = NULL;
	pq->size = 0;
}

判空

链表为空的标志是size == 0.

代码:

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->size == 0;
}

销毁

因为队列底层是用单链表实现,所以在销毁时得一个节点一个节点的释放。在销毁节点A前,需要先记录A的下一个结点,否则把A释放后,将找不到它的下一个节点。销毁链表时还有一个细节,当只有一个节点时,free头结点后,要将头指针和尾指针都置空,如果仅把头指针置空,那么尾指针就是野指针。

代码:

void QueueDestroy(Queue* pq)
{
	assert(pq);

	while (pq->phead)
	{
		QueueNode* next = pq->phead->next;
		free(pq->phead);
		pq->phead = next;
		if (next == NULL) pq->ptail = NULL;//只有一个节点时,防止ptail为野指针
	}
}

队列的长度

size就是队列的长度,返回size即可。

代码:

int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}

插入

由于定义了尾指针,所以在插入前,就不需要遍历链表找尾了。第一种情况,链表不为空,不需要调整头指针,直接将新节点链接到尾节点后面即可,但不要忘了size++。第二种情况,链表为空,插入时,头指针和尾指针的指向都需要修改。

代码:

//创建节点
QueueNode* BuyNode(QueueDataType x)
{
	QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return NULL;
	}

	newnode->next = NULL;
	newnode->data = x;

	return newnode;
}

void QueuePush(Queue* pq, QueueDataType x)
{
	assert(pq);

	QueueNode* newnode = BuyNode(x);

	if (pq->phead == NULL)
	{
		pq->phead = pq->ptail = newnode;
	}
	else
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;//更新尾指针
	}
	pq->size++;
}

删除

第一点,当队列为空时,无法删除。第二,队列的删除操作是在队头进行的,所以需要更新头指针的指向。最后,不要忘了size--。

代码:

void QueuePop(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	QueueNode* newhead = pq->phead->next;
	free(pq->phead);
	pq->phead = newhead;
    pq->size--;
}

返回队头元素

通过头指针便可以访问到队头元素。当队列为空时,无法返回。

代码:

QueueDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->phead->data;
}

循环队列

循环队列是把顺序队列首尾相连,把存储队列元素的数组从逻辑上看成一个环,成为循环队列。在物理上,它就是个数组,在逻辑上,我们要把它想象成一个圆环。循环队列的实现一般定义两个指针,头指针front和尾指针rear,front和rear开始都赋为0,每插入一个元素,rear++,每删除一个元素,front++,这和顺序栈如出一辙。front指向头,rear指向尾元素的下一个位置。

循环队列遵循先进先出的原则。

从队尾入队列,从队头出队列。

用数组实现的循环队列支持下标的随机访问,访问速度快。 

假溢出

请看上图,往队列里插入8个元素使队列呈满的状态,接着删除两个元素,此时,队列里有两个空位,但这两个空位是无法使用的,因为rear已经越界了,无法再继续插入。这种现象就叫作“假溢出”。这就导致了空间的浪费。

克服假溢出的方法有两种,第一种,把数组元素往前挪动,使其起始位置从0开始,显然,这种方法是很浪费时间的。第二种方法,就是使用循环队列,当存到最后一个地址后,下一个存放的位置就是从0开始。这也使得用数组实现的循环队列长度是固定的,不能动态增长。 

空与满的判定

循环队列的循环效果是用取余运算来实现的。在实现循环队列之前,我们首先搞清楚下面的问题——如何区分循环队列的空与满。

对比图a和图d1,我们发现,当循环队列为空时,存在front == rear,当循环队列满时,也存在front == rear,这样,就导致无法区分循环队列的空和满。解决方案有两种,第一种,令设一个变量来记录队列中的元素个数,以区分空和满;第二种,留出一个元素的空间,当队列头指针在队列尾指针的下一位置时,队列为满,队列为空的标志是front == rear,这样就将空和满这两种情况给区分开了。 

实现 

#define MIXSIZE 10

typedef int CQueueDataType;

typedef struct CycleQueue
{
	CQueueDataType a[MIXSIZE];
	int front;
	int rear;
}CycleQueue;

初始化

代码:

void CycleQueueInit(CycleQueue* pcq)
{
	assert(pcq);
	pcq->front = 0;
	pcq->rear = 0;
}

插入

如果队列已满,那么将无法插入。因为循环队列是定长的,长度不可动态增长。往队列中插入数据时还有以下细节:

第一种情况,直接rear++即可。第二种情况,在插入数据以后,如果直接rear++,将会越界,需要做特殊处理。

以上两种情况的统一处理方式为:

rear = (rear + 1)% MIXSIZE; 

当rear为最后一个元素的下标时,rear + 1 就是MIXSIZE,再模上MIXSIZE,正好为0,回到了数组的起始位置。由于取模操作本质上是去掉整除的部分,所以当rear < MIXSIZE时,进行取模操作后也可以得到正确的结果。

代码:

void CycleQueuePush(CycleQueue* pcq, CQueueDataType x)
{
	assert(pcq);
	assert(!CycleQueueFull(pcq));

	pcq->a[pcq->rear] = x;
	pcq->rear = (pcq->rear + 1) % MIXSIZE;
}

判空

循环队列为空的标志是:front == rear。

代码:

bool CycleQueueEmtpy(CycleQueue* pcq)
{
	assert(pcq);
	return pcq->front == pcq->rear;
}

销毁

代码:

void CycleQueueDestroy(CycleQueue* pcq)
{
	assert(pcq);
	free(pcq->a);
	pcq->front = 0;
	pcq->rear = 0;
}

删除

由于循环队列是用数组实现,所谓的删除并不是抹除数据,而是通过控制下标,让该元素在删除后无法被访问到。这里和插入时一样,有一个很类似的细节:

front++后可能会越界,统一的处理方式如下:

front = (front + 1)% MIXSIZE; 

代码:

void CycleQueuePop(CycleQueue* pcq)
{
	assert(pcq);
	pcq->front = (pcq->front + 1) % MIXSIZE;
}

返回队列长度

求循环队列长度的公式:

len = (rear - front + MIXSIZE) % MIXSIZE;

代码:

int CycleQueueLen(CycleQueue* pcq)
{
	assert(pcq);
	return (pcq->rear - pcq->front + MIXSIZE) % MIXSIZE;
}

返回队列头元素

队列头元素的下标为front。

代码:

CQueueDataType CycleQueueFront(CycleQueue* pcq)
{
	assert(pcq);
	return pcq->a[pcq->front];
}

判满

循环队列满的标志:

(rear + 1)% MIXSIZE == front; 

代码:

bool CycleQueueFull(CycleQueue* pcq)
{
	assert(pcq);
	return (pcq->rear + 1) % MIXSIZE == pcq->front;
}

 完! 

————————————————————————————————————————————————————————————

本文含有隐藏内容,请 开通VIP 后查看