阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理
文章目录
简介
DDColor是一种基于深度学习的图像上色技术,它利用卷积神经网络(CNN)对黑白图像进行上色处理。该模型通常包含一个编码器和一个解码器,编码器提取图像的特征,解码器则根据这些特征生成颜色。DDColor模型能够处理多种类型的图像,并生成自然且逼真的颜色效果。它在图像编辑、电影后期制作以及历史照片修复等领域有广泛的应用。
环境部署
下载源码
git clone https://github.com/piddnad/DDColor.git
安装环境
conda create -n ddcolor python=3.9
conda activate ddcolor
pip install -r requirements.txt
python3 setup.py develop
pip install modelscope
pip install onnx
pip install onnxruntime
下载模型
这里下载
或者运行下面的脚本下载:
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s'%model_dir)
#模型会被下载到modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt
测试一下
import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as F
class ImageColorizationPipeline(object):
def __init__(self, model_path, input_size=256, model_size='large'):
self.input_size = input_size
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
if model_size == 'tiny':
self.encoder_name = 'convnext-t'
else:
self.encoder_name = 'convnext-l'
self.decoder_type = "MultiScaleColorDecoder"
if self.decoder_type == 'MultiScaleColorDecoder':
self.model = DDColor(
encoder_name=self.encoder_name,
decoder_name='MultiScaleColorDecoder',
input_size=[self.input_size, self.input_size],
num_output_channels=2,
last_norm='Spectral',
do_normalize=False,
num_queries=100,
num_scales=3,
dec_layers=9,
).to(self.device)
else:
self.model = DDColor(
encoder_name=self.encoder_name,
decoder_name='SingleColorDecoder',
input_size=[self.input_size, self.input_size],
num_output_channels=2,
last_norm='Spectral',
do_normalize=False,
num_queries=256,
).to(self.device)
self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)
self.model.eval()
@torch.no_grad()
def process(self, img):
self.height, self.width = img.shape[:2]
# print(self.width, self.height)
# if self.width * self.height < 100000:
# self.input_size = 256
img = (img / 255.0).astype(np.float32)
orig_l = cv2.cvtColor(img, cv2