续上节。
环境依旧是上一节的环境,这里不再体现
3、MobileNetV2模型搭建
使用MindSpore定义MobileNetV2网络的各模块时需要继承mindspore.nn.Cell(在前面的学习中有提到过)。
原始模型激活函数为ReLU6,池化模块采用是全局平均池化层。
以下代码(来自官方文档)定义了一个MobileNetV2神经网络模型,它包含轻量级的主干网络(MobileNetV2Backbone)和分类头(MobileNetV2Head),通过倒置残差块和深度可分离卷积减少计算量,适用于移动设备上的图像分类任务,并提供灵活的模型组合方式以便于用户自定义和扩展。
__all__ = ['MobileNetV2', 'MobileNetV2Backbone', 'MobileNetV2Head', 'mobilenet_v2']
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class GlobalAvgPooling(nn.Cell):
"""
Global avg pooling definition.
Args:
Returns:
Tensor, output tensor.
Examples:
>>> GlobalAvgPooling()
"""
def __init__(self):
super(GlobalAvgPooling, self).__init__()
def construct(self, x):
x = P.mean(x, (2, 3))
return x
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
in_channels = in_planes
out_channels = out_planes
if groups == 1:
conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad', padding=padding)
else:
out_channels = in_planes
conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad',
padding=padding, group=in_channels)
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class InvertedResidual(nn.Cell):
"""
Mobilenetv2 residual block definition.
Args:
inp (int): Input channel.
oup (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
expand_ratio (int): expand ration of input channel
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
ConvBNReLU(hidden_dim, hidden_dim,
stride=stride, groups=hidden_dim),
nn.Conv2d(hidden_dim, oup, kernel_size=1,
stride=1, has_bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.SequentialCell(layers)
self.cast = P.Cast()
def construct(self, x):
identity = x
x = self.conv(x)
if self.use_res_connect:
return P.add(identity, x)
return x
class MobileNetV2Backbone(nn.Cell):
"""
MobileNetV2 architecture.
Args:
class_num (int): number of classes.
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
has_dropout (bool): Is dropout used. Default is false
inverted_residual_setting (list): Inverted residual settings. Default is None
round_nearest (list): Channel round to . Default is 8
Returns:
Tensor, output tensor.
Examples:
>>> MobileNetV2(num_classes=1000)
"""
def __init__(self, width_mult=1., inverted_residual_setting=None, round_nearest=8,
input_channel=32, last_channel=1280):
super(MobileNetV2Backbone, self).__init__()
block = InvertedResidual
# setting of inverted residual blocks
self.cfgs = inverted_residual_setting
if inverted_residual_setting is None:
self.cfgs = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in self.cfgs:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
self.features = nn.SequentialCell(features)
self._initialize_weights()
def construct(self, x):
x = self.features(x)
return x
def _initialize_weights(self):
"""
Initialize weights.
Args:
Returns:
None.
Examples:
>>> _initialize_weights()
"""
self.init_parameters_data()
for _, m in self.cells_and_names():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.set_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
m.weight.data.shape).astype("float32")))
if m.bias is not None:
m.bias.set_data(
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
elif isinstance(m, nn.BatchNorm2d):
m.gamma.set_data(
Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
m.beta.set_data(
Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
@property
def get_features(self):
return self.features
class MobileNetV2Head(nn.Cell):
"""
MobileNetV2 architecture.
Args:
class_num (int): Number of classes. Default is 1000.
has_dropout (bool): Is dropout used. Default is false
Returns:
Tensor, output tensor.
Examples:
>>> MobileNetV2(num_classes=1000)
"""
def __init__(self, input_channel=1280, num_classes=1000, has_dropout=False, activation="None"):
super(MobileNetV2Head, self).__init__()
# mobilenet head
head = ([GlobalAvgPooling(), nn.Dense(input_channel, num_classes, has_bias=True)] if not has_dropout else
[GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(input_channel, num_classes, has_bias=True)])
self.head = nn.SequentialCell(head)
self.need_activation = True
if activation == "Sigmoid":
self.activation = nn.Sigmoid()
elif activation == "Softmax":
self.activation = nn.Softmax()
else:
self.need_activation = False
self._initialize_weights()
def construct(self, x):
x = self.head(x)
if self.need_activation:
x = self.activation(x)
return x
def _initialize_weights(self):
"""
Initialize weights.
Args:
Returns:
None.
Examples:
>>> _initialize_weights()
"""
self.init_parameters_data()
for _, m in self.cells_and_names():
if isinstance(m, nn.Dense):
m.weight.set_data(Tensor(np.random.normal(
0, 0.01, m.weight.data.shape).astype("float32")))
if m.bias is not None:
m.bias.set_data(
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
@property
def get_head(self):
return self.head
class MobileNetV2(nn.Cell):
"""
MobileNetV2 architecture.
Args:
class_num (int): number of classes.
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
has_dropout (bool): Is dropout used. Default is false
inverted_residual_setting (list): Inverted residual settings. Default is None
round_nearest (list): Channel round to . Default is 8
Returns:
Tensor, output tensor.
Examples:
>>> MobileNetV2(backbone, head)
"""
def __init__(self, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, \
round_nearest=8, input_channel=32, last_channel=1280):
super(MobileNetV2, self).__init__()
self.backbone = MobileNetV2Backbone(width_mult=width_mult, \
inverted_residual_setting=inverted_residual_setting, \
round_nearest=round_nearest, input_channel=input_channel, last_channel=last_channel).get_features
self.head = MobileNetV2Head(input_channel=self.backbone.out_channel, num_classes=num_classes, \
has_dropout=has_dropout).get_head
def construct(self, x):
x = self.backbone(x)
x = self.head(x)
return x
class MobileNetV2Combine(nn.Cell):
"""
MobileNetV2Combine architecture.
Args:
backbone (Cell): the features extract layers.
head (Cell): the fully connected layers.
Returns:
Tensor, output tensor.
Examples:
>>> MobileNetV2(num_classes=1000)
"""
def __init__(self, backbone, head):
super(MobileNetV2Combine, self).__init__(auto_prefix=False)
self.backbone = backbone
self.head = head
def construct(self, x):
x = self.backbone(x)
x = self.head(x)
return x
def mobilenet_v2(backbone, head):
return MobileNetV2Combine(backbone, head)
函数解析及其作用
_make_divisible
函数:- 作用:确保通道数能够被某个数整除,这样有利于模型的性能和数值稳定性。
- 参数:
v
:原始的通道数。divisor
:希望通道数能够整除的数。min_value
:通道数的最小值,默认与divisor
相同。
GlobalAvgPooling
类:- 作用:实现全局平均池化,将特征图的每个通道的所有像素值取平均,得到一个数,用于压缩特征图的大小。
- 方法:
construct
:执行全局平均池化操作。
ConvBNReLU
类:- 作用:实现卷积、批归一化和ReLU激活函数的组合,是神经网络中常用的基础模块。
- 参数:
in_planes
:输入通道数。out_planes
:输出通道数。kernel_size
:卷积核大小。stride
:卷积的步长。groups
:分组卷积的组数,1表示普通卷积,大于1表示深度可分离卷积。
- 方法:
construct
:执行卷积、批归一化和ReLU激活函数的组合操作。
InvertedResidual
类:- 作用:实现MobileNetV2中的倒置残差块,包含深度可分离卷积和线性瓶颈。
- 参数:
inp
:输入通道数。oup
:输出通道数。stride
:第一个卷积层的步长。expand_ratio
:输入通道的扩展比例。
- 方法:
construct
:执行倒置残差块的操作,如果步长为1且输入输出通道数相同,则使用残差连接。
MobileNetV2Backbone
类:- 作用:构建MobileNetV2的主干网络,包含多个倒置残差块。
- 参数:
width_mult
:通道数的倍乘因子。inverted_residual_setting
:倒置残差块的配置列表。round_nearest
:通道数取整的基数。input_channel
:输入层的通道数。last_channel
:最后一层的通道数。
- 方法:
construct
:执行主干网络的正向传播。_initialize_weights
:初始化网络的权重。
MobileNetV2Head
类:- 作用:构建MobileNetV2的分类头,通常包含全局平均池化和全连接层。
- 参数:
input_channel
:输入通道数。num_classes
:分类的类别数。has_dropout
:是否使用Dropout层。activation
:最后的激活函数。
- 方法:
construct
:执行分类头的正向传播。_initialize_weights
:初始化分类头的权重。
MobileNetV2
类:- 作用:整合主干网络和分类头,构建完整的MobileNetV2模型。
- 参数:
num_classes
:分类的类别数。width_mult
:通道数的倍乘因子。has_dropout
:是否使用Dropout层。inverted_residual_setting
:倒置残差块的配置列表。round_nearest
:通道数取整的基数。input_channel
:输入层的通道数。last_channel
:最后一层的通道数。
- 方法:
construct
:执行整个模型的正向传播。
MobileNetV2Combine
类:- 作用:将主干网络和分类头组合起来,提供一个更灵活的模型构建方式。
- 参数:
backbone
:主干网络。head
:分类头。
- 方法:
construct
:执行组合模型的正向传播。
mobilenet_v2
函数:- 作用:创建
MobileNetV2Combine
类的实例。
- 作用:创建
2024-07-12 15:44:21 Mindstorm