LearnOpenGL学习(高级OpenGL -> 高级GLSL,几何着色器)

发布于:2024-12-18 ⋅ 阅读:(115) ⋅ 点赞:(0)

完整代码见:zaizai77/Cherno-OpenGL: OpenGL 小白学习之路

高级GLSL

内建变量

顶点着色器

gl_PointSoze : float 输出变量,用于控制渲染 GL_POINTS 型图元时,点的大小。可用于粒子系统。将其设置为 gl_Position.z 时,可以使点的距离越远,大小越大。创建出类似近视眼看远处灯光的效果

glEnable(GL_PROGRAM_POINT_SIZE);   //也是需要开启

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);    
    gl_PointSize = gl_Position.z;    
}

gl_vertexID: int 型输入变量(只读),存储了正在绘制顶点的ID(当(使用glDrawElements)进行索引渲染的时候,这个变量会存储正在绘制顶点的当前索引。当(使用glDrawArrays)不使用索引进行绘制的时候,这个变量会储存从渲染调用开始的已处理顶点数量。)

片段着色器

gl_FragCoord: vec4型输出变量。存储了屏幕空间坐标(x,y ,以窗口左下角为原点)和图元深度值(z,0 - 1).常用来获取深度值。

我们已经使用glViewport设定了一个800x600的窗口了,所以片段窗口空间坐标的x分量将在0到800之间,y分量在0到600之间。

void main()
{             
    if(gl_FragCoord.x < 400)
        FragColor = vec4(1.0, 0.0, 0.0, 1.0);
    else
        FragColor = vec4(0.0, 1.0, 0.0, 1.0);        
}

gl_FrontFacing:  bool 型输入变量。标记了当前图元是否为正面

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D frontTexture;
uniform sampler2D backTexture;

void main()
{             
    if(gl_FrontFacing)
        FragColor = texture(frontTexture, TexCoords);
    else
        FragColor = texture(backTexture, TexCoords);
}

给立方体里外使用不同的纹理:

 

gl_FragDepth :float 型输出变量。用于手动设置片段的深度值。在片段着色器中出现后,Early-Z 将被禁用

gl_FragDepth = 0.0; // 这个片段现在的深度值为 0.0
//如果着色器没有写入值到gl_FragDepth,它会自动取用gl_FragCoord.z的值。

从OpenGL 4.2起,我们仍可以对两者进行一定的调和,在片段着色器的顶部使用深度条件(Depth Condition)重新声明gl_FragDepth变量:

layout (depth_<condition>) out float gl_FragDepth;

这样子的话,当深度值比片段的深度值要小的时候,OpenGL仍是能够进行提前深度测试的。

接口块

但当程序变得更大时,你希望发送的可能就不只是几个变量了,它还可能包括数组和结构体。

接口块的声明和struct的声明有点相像,不同的是,现在根据它是一个输入还是输出块(Block),使用inout关键字来定义的。

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

out VS_OUT
{
    vec2 TexCoords;
} vs_out;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);    
    vs_out.TexCoords = aTexCoords;
}

这次我们声明了一个叫做vs_out的接口块,它打包了我们希望发送到下一个着色器中的所有输出变量

之后,我们还需要在下一个着色器,即片段着色器,中定义一个输入接口块。

#version 330 core
out vec4 FragColor;

in VS_OUT
{
    vec2 TexCoords;
} fs_in;

uniform sampler2D texture;

void main()
{             
    FragColor = texture(texture, fs_in.TexCoords);   
}

只要两个接口块的名字一样,它们对应的输入和输出将会匹配起来。这是帮助你管理代码的又一个有用特性,它在几何着色器这样穿插特定着色器阶段的场景下会很有用。

Uniform 缓冲对象

OpenGL为我们提供了一个叫做Uniform缓冲对象(Uniform Buffer Object)的工具,它允许我们定义一系列在多个着色器程序中相同的全局Uniform变量。当使用Uniform缓冲对象的时候,我们只需要设置相关的uniform一次

因为Uniform缓冲对象仍是一个缓冲,我们可以使用glGenBuffers来创建它,将它绑定到GL_UNIFORM_BUFFER缓冲目标,并将所有相关的uniform数据存入缓冲。在Uniform缓冲对象中储存数据是有一些规则的

#version 330 core
layout (location = 0) in vec3 aPos;

layout (std140) uniform Matrices
{
    mat4 projection;
    mat4 view;
};

uniform mat4 model;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

这里,我们声明了一个叫做Matrices的Uniform块,它储存了两个4x4矩阵。Uniform块中的变量可以直接访问,不需要加块名作为前缀。

接下来,我们在OpenGL代码中将这些矩阵值存入缓冲中,每个声明了这个Uniform块的着色器都能够访问这些矩阵。

其中,layout(std140) 指定了Uniform块布局。默认情况下,Uniform块布局是Shared型,这类布局的各变量偏移量会随设备和系统的不同而变化。但我们希望Uniform块中各变量的偏移量能被手工计算出,以便让块内各变量能与UBO中各变量相对应。std140布局便是我们需要的。

在std140布局中,每个变量都有一个基准对齐量(Base Alignment),它是一个变量在Uniform块中占据的空间。每个变量还有一个对齐偏移量(Aligned Offset),它是一个变量从块起始位置的偏移量,它必须是Base Alignment的倍数。简而言之,前者是size,后者是offset。

Uniform 块布局

Uniform块的内容是储存在一个缓冲对象中的,它实际上只是一块预留内存。因为这块内存并不会保存它具体保存的是什么类型的数据,我们还需要告诉OpenGL内存的哪一部分对应着着色器中的哪一个uniform变量。

假设着色器中有以下的这个Uniform块:

layout (std140) uniform ExampleBlock
{
    float value;
    vec3  vector;
    mat4  matrix;
    float values[3];
    bool  boolean;
    int   integer;
};

4 字节是 1 N

layout (std140) uniform ExampleBlock
{
                     // 基准对齐量       // 对齐偏移量
    float value;     // 4               // 0 
    vec3 vector;     // 16              // 16  (必须是16的倍数,所以 4->16)
    mat4 matrix;     // 16              // 32  (列 0)
                     // 16              // 48  (列 1)
                     // 16              // 64  (列 2)
                     // 16              // 80  (列 3)
    float values[3]; // 16              // 96  (values[0])
                     // 16              // 112 (values[1])
                     // 16              // 128 (values[2])
    bool boolean;    // 4               // 144
    int integer;     // 4               // 148
}; 

使用 Uniform 缓冲

我们已经讨论了如何在着色器中定义Uniform块,并设定它们的内存布局了,但我们还没有讨论该如何使用它们。

首先,我们需要调用glGenBuffers,创建一个Uniform缓冲对象。一旦我们有了一个缓冲对象,我们需要将它绑定到GL_UNIFORM_BUFFER目标,并调用glBufferData,分配足够的内存。

unsigned int uboExampleBlock;
glGenBuffers(1, &uboExampleBlock);
glBindBuffer(GL_UNIFORM_BUFFER, uboExampleBlock);
glBufferData(GL_UNIFORM_BUFFER, 152, NULL, GL_STATIC_DRAW); // 分配152字节的内存
glBindBuffer(GL_UNIFORM_BUFFER, 0);

在OpenGL上下文中,定义了一些绑定点(Binding Point),我们可以将一个Uniform缓冲链接至它。在创建Uniform缓冲之后,我们将它绑定到其中一个绑定点上,并将着色器中的Uniform块绑定到相同的绑定点,把它们连接到一起。下面的这个图示展示了这个:

我们可以绑定多个Uniform缓冲到不同的绑定点上。因为着色器A和着色器B都有一个链接到绑定点0的Uniform块,它们的Uniform块将会共享相同的uniform数据,uboMatrices,前提条件是两个着色器都定义了相同的Matrices Uniform块。

为了将Uniform块绑定到一个特定的绑定点中,我们需要调用glUniformBlockBinding函数,它的第一个参数是一个程序对象,之后是一个Uniform块索引和链接到的绑定点。Uniform块索引(Uniform Block Index)是着色器中已定义Uniform块的位置值索引。这可以通过调用glGetUniformBlockIndex来获取,它接受一个程序对象和Uniform块的名称。我们可以用以下方式将图示中的Lights Uniform块链接到绑定点2:

unsigned int lights_index = glGetUniformBlockIndex(shaderA.ID, "Lights");   
glUniformBlockBinding(shaderA.ID, lights_index, 2);

接下来,我们还需要绑定Uniform缓冲对象到相同的绑定点上,这可以使用glBindBufferBaseglBindBufferRange来完成。

glBindBufferBase(GL_UNIFORM_BUFFER, 2, uboExampleBlock); 
// 或
glBindBufferRange(GL_UNIFORM_BUFFER, 2, uboExampleBlock, 0, 152);
//glBindBufferRange函数,它需要一个附加的偏移量和大小参数,
//这样子你可以绑定Uniform缓冲的特定一部分到绑定点中。

使用:

//创建UBO
unsigned int UBO;
glGenBuffers(1,&UBO);
glBindBuffer(GL_UNIFORM_BUFFER,UBO);
glBufferData(GL_UNIFORM_BUFFER,152,NULL,GL_STATIC_DRAW);
//获取Uniform块索引
unsigned int UBI = glGetUniformBlockIndex(shader.ID,"Matrices");
//绑定块索引至绑定点
glUniformBlockBinding(shader.ID,UBI,0);
//绑定UBO到绑定点
glBindBufferBase(GL_UNIFORM_BUFFER,0,UBO);
//传输数据
glBufferSubData(GL_UNIFORM_BUFFER,0,sizeof(glm::mat4),value_ptr(projection));
//解绑
glBindBuffer(GL_UNIFORM_BUFFER,0);

使用UBO的好处主要在于:设置一个UBO,改变所有绑定的着色器中的块;提高着色器中允许存在的uniform数量。

//shader

#version 330 core
layout (location = 0) in vec3 aPos;

layout (std140) uniform Matrices
{
    mat4 projection;
    mat4 view;
};
uniform mat4 model;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

//.cpp

//首先,我们将顶点着色器的Uniform块设置为绑定点0。注意我们需要对每个着色器都设置一遍。
unsigned int uniformBlockIndexRed    = glGetUniformBlockIndex(shaderRed.ID, "Matrices");
unsigned int uniformBlockIndexGreen  = glGetUniformBlockIndex(shaderGreen.ID, "Matrices");
unsigned int uniformBlockIndexBlue   = glGetUniformBlockIndex(shaderBlue.ID, "Matrices");
unsigned int uniformBlockIndexYellow = glGetUniformBlockIndex(shaderYellow.ID, "Matrices");  

glUniformBlockBinding(shaderRed.ID,    uniformBlockIndexRed, 0);
glUniformBlockBinding(shaderGreen.ID,  uniformBlockIndexGreen, 0);
glUniformBlockBinding(shaderBlue.ID,   uniformBlockIndexBlue, 0);
glUniformBlockBinding(shaderYellow.ID, uniformBlockIndexYellow, 0);

//接下来,我们创建Uniform缓冲对象本身,并将其绑定到绑定点0:
unsigned int uboMatrices
glGenBuffers(1, &uboMatrices);

glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferData(GL_UNIFORM_BUFFER, 2 * sizeof(glm::mat4), NULL, GL_STATIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);

glBindBufferRange(GL_UNIFORM_BUFFER, 0, uboMatrices, 0, 2 * sizeof(glm::mat4));

//填充数据
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f);
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(glm::mat4), glm::value_ptr(projection));
glBindBuffer(GL_UNIFORM_BUFFER, 0);

glm::mat4 view = camera.GetViewMatrix();           
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferSubData(GL_UNIFORM_BUFFER, sizeof(glm::mat4), sizeof(glm::mat4), glm::value_ptr(view));
glBindBuffer(GL_UNIFORM_BUFFER, 0);

//绘制
glBindVertexArray(cubeVAO);
shaderRed.use();
glm::mat4 model;
model = glm::translate(model, glm::vec3(-0.75f, 0.75f, 0.0f));  // 移动到左上角
shaderRed.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);        
// ... 绘制绿色立方体
// ... 绘制蓝色立方体
// ... 绘制黄色立方体 

几何着色器

几何着色器(Geometry Shader)位于顶点着色器和片段着色器之间,它的输入是一个图元的一组顶点,用于在将其发送到下一个着色器阶段前对其进行变换。几何着色器可以把一组顶点变化为不同的图元,也可以生成更多的顶点。

例子:

#version 330 core
//声明从顶点着色器传入的图元类型
//图元类型包括:points(GL_POINTS)、lines(GL_LINES/GL_LINES_STRIP)、
//lines_adjacency(GL_LINES_ADJACENCY/GL_LINE_STRIP_ADJACENCY)、
//triangles(GL_TRIANGLES/GL_TRIANGLE_STRIP/GL_TRIANGLE_FAN)、
//triangless_adjacency(GL_TRIANGLES_ADJACENCY/GL_TRIANGLE_STRIP_ADJACENCY)
layout (points) in;
//声明输出的图元类型。可接受points、line_strip、triangle_strip
//同时需要声明输出的最大顶点数
layout (line_strip, max_vertices = 2) out;

void main() {    
    //gl_in是一个内建接口块数组(因为图元不止一个顶点),
//其中包含gl_Position、gl_PointSize和gl_CLipDistance[]。
    //这里的gl_Position作为一个临时变量,用于存储新顶点的位置。
    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 
    //调用EmitVertex后,将在gl_Position所处的位置生成一个新顶点
    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
    EmitVertex();
	//调用EndPrimitive后,Emit的顶点将被合成为指定的图元。
    EndPrimitive();
}

为了生成更有意义的结果,我们需要某种方式来获取前一着色器阶段的输出。GLSL提供给我们一个内建(Built-in)变量,在内部看起来(可能)是这样的:

in gl_Vertex
{
    vec4  gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
} gl_in[];

它被声明为一个数组,因为大多数的渲染图元包含多于1个的顶点,而几何着色器的输入是一个图元的所有顶点。

有了之前顶点着色器阶段的顶点数据,我们就可以使用2个几何着色器函数,EmitVertexEndPrimitive,来生成新的数据了。几何着色器希望你能够生成并输出至少一个定义为输出的图元。在我们的例子中,我们需要至少生成一个线条图元。

void main() {
    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 
    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
    EmitVertex();

    EndPrimitive();
}

每次我们调用EmitVertex时,gl_Position中的向量会被添加到图元中来。当EndPrimitive被调用时,所有发射出的(Emitted)顶点都会合成为指定的输出渲染图元。在一个或多个EmitVertex调用之后重复调用EndPrimitive能够生成多个图元

在这个例子中,我们发射了两个顶点,它们从原始顶点位置平移了一段距离,之后调用了EndPrimitive,将这两个顶点合成为一个包含两个顶点的线条。

//本来的绘制函数

glDrawArrays(GL_POINTS, 0, 4);

使用几何着色器

创建几何着色器:

geometryShader = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometryShader, 1, &gShaderCode, NULL);
glCompileShader(geometryShader);  
...
glAttachShader(program, geometryShader);
glLinkProgram(program);

利用点创造房子:

通过使用三角形带作为几何着色器的输出,我们可以很容易创建出需要的房子形状,只需要以正确的顺序生成3个相连的三角形就行了。下面这幅图展示了顶点绘制的顺序,蓝点代表的是输入点:

 几何着色器:

#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices = 5) out;

void build_house(vec4 position)
{    
    gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:左下
    EmitVertex();   
    gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:右下
    EmitVertex();
    gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:左上
    EmitVertex();
    gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:右上
    EmitVertex();
    gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:顶部
    EmitVertex();
    EndPrimitive();
}

void main() {    
    build_house(gl_in[0].gl_Position);
}

这个几何着色器生成了5个顶点,每个顶点都是原始点的位置加上一个偏移量,来组成一个大的三角形带。最终的图元会被光栅化,然后片段着色器会处理整个三角形带,最终在每个绘制的点处生成一个绿色房子:

还可以设置颜色:

fColor = gs_in[0].color; 
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:左下 
EmitVertex();   
gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:右下
EmitVertex();
gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:左上
EmitVertex();
gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:右上
EmitVertex();
gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:顶部
fColor = vec3(1.0, 1.0, 1.0);
EmitVertex();
EndPrimitive();  

爆破物体

将每个三角形沿着法向量的方向移动一小段时间,得到一种爆炸的效果。无论物体多么复杂,都可以应用

//几何着色器  获取每个三角形的法线
vec3 GetNormal()
{
   vec3 a = vec3(gl_in[0].gl_Position) - vec3(gl_in[1].gl_Position);
   vec3 b = vec3(gl_in[2].gl_Position) - vec3(gl_in[1].gl_Position);
   return normalize(cross(a, b));
}

cross叉乘注意顺序,如果交换两个参数会获得相反的法线方向

爆炸函数:

vec4 explode(vec4 position, vec3 normal)
{
    float magnitude = 2.0;
    vec3 direction = normal * ((sin(time) + 1.0) / 2.0) * magnitude; 
    return position + vec4(direction, 0.0);
}

完整的几何着色器: 

#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices = 3) out;

in VS_OUT {
    vec2 texCoords;
} gs_in[];

out vec2 TexCoords; 

uniform float time;

vec4 explode(vec4 position, vec3 normal) { ... }

vec3 GetNormal() { ... }

void main() {    
    vec3 normal = GetNormal();

    gl_Position = explode(gl_in[0].gl_Position, normal);
    TexCoords = gs_in[0].texCoords;
    EmitVertex();
    gl_Position = explode(gl_in[1].gl_Position, normal);
    TexCoords = gs_in[1].texCoords;
    EmitVertex();
    gl_Position = explode(gl_in[2].gl_Position, normal);
    TexCoords = gs_in[2].texCoords;
    EmitVertex();
    EndPrimitive();
}

法向量可视化

当编写光照着色器时,你可能会最终会得到一些奇怪的视觉输出,但又很难确定导致问题的原因。光照错误很常见的原因就是法向量错误

我们想要的是使用某种方式来检测提供的法向量是正确的。几何着色器正是实现这一目的非常有用的工具。

思路:我们首先不使用几何着色器正常绘制场景。然后再次绘制场景,但这次只显示通过几何着色器生成法向量。几何着色器接收一个三角形图元,并沿着法向量生成三条线——每个顶点一个法向量。伪代码看起来会像是这样:

shader.use();
DrawScene();
normalDisplayShader.use();
DrawScene();

着色器: 

//vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out VS_OUT {
    vec3 normal;
} vs_out;

uniform mat4 view;
uniform mat4 model;

void main()
{
    gl_Position = view * model * vec4(aPos, 1.0); 
    mat3 normalMatrix = mat3(transpose(inverse(view * model)));
    vs_out.normal = normalize(vec3(vec4(normalMatrix * aNormal, 0.0)));
}

//gs

#version 330 core
layout (triangles) in;
layout (line_strip, max_vertices = 6) out;

in VS_OUT {
    vec3 normal;
} gs_in[];

const float MAGNITUDE = 0.4;

uniform mat4 projection;

void GenerateLine(int index)
{
    gl_Position = projection * gl_in[index].gl_Position;
    EmitVertex();
    gl_Position = projection * (gl_in[index].gl_Position + 
                                vec4(gs_in[index].normal, 0.0) * MAGNITUDE);
    EmitVertex();
    EndPrimitive();
}

void main()
{
    GenerateLine(0); // 第一个顶点法线
    GenerateLine(1); // 第二个顶点法线
    GenerateLine(2); // 第三个顶点法线
}

//fs

#version 330 core
out vec4 FragColor;

void main()
{
    FragColor = vec4(1.0, 1.0, 0.0, 1.0);
}

跟身上长刺似的

参考:高级GLSL - LearnOpenGL CN

LearnOpenGL学习笔记(十) - 高级GLSL、几何着色器、实例化与抗锯齿 - Yoi's Home