机器学习管道 pipeline

发布于:2025-05-12 ⋅ 阅读:(16) ⋅ 点赞:(0)

知识回顾:

  1. 转化器和估计器的概念
  2. 管道工程
  3. ColumnTransformer和Pipeline类

作业:

整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline

基础概念

pipeline在机器学习领域可以翻译为“管道”,也可以翻译为“流水线”,是机器学习中一个重要的概念。

在机器学习中,通常会按照一定的顺序对数据进行预处理、特征提取、模型训练和模型评估等步骤,以实现机器学习模型的训练和评估。为了方便管理这些步骤,我们可以使用pipeline来构建一个完整的机器学习流水线。

pipeline是一个用于组合多个估计器(estimator)的 estimator,它实现了一个流水线,其中每个估计器都按照一定的顺序执行。在pipeline中,每个估计器都实现了fit和transform方法,fit方法用于训练模型,transform方法用于对数据进行预处理和特征提取。

在此之前我们先介绍下 转换器(transformer)和估计器(estimator)的概念。

转换器(transformer)

转换器(transformer)是一个用于对数据进行预处理和特征提取的 estimator,它实现一个 transform 方法,用于对数据进行预处理和特征提取。转换器通常用于对数据进行预处理,例如对数据进行归一化、标准化、缺失值填充等。转换器也可以用于对数据进行特征提取,例如对数据进行特征选择、特征组合等。转换器的特点是无状态的,即它们不会存储任何关于数据的状态信息(指的是不存储内参)。转换器仅根据输入数据学习转换规则(比如函数规律、外参),并将其应用于新的数据。因此,转换器可以在训练集上学习转换规则,并在训练集之外的新数据上应用这些规则。

常见的转换器包括数据缩放器(如StandardScaler、MinMaxScaler)、特征选择器(如SelectKBest、PCA)、特征提取器(如CountVectorizer、TF-IDFVectorizer)等。

估计器(estimator)

估计器(Estimator)是实现机器学习算法的对象或类。它用于拟合(fit)数据并进行预测(predict)。估计器是机器学习模型的基本组成部分,用于从数据中学习模式、进行预测和进行模型评估。

估计器的主要方法是fit和predict。fit方法用于根据输入数据学习模型的参数和规律,而predict方法用于对新的未标记样本进行预测。估计器的特点是有状态的,即它们在训练过程中存储了关于数据的状态信息,以便在预测阶段使用。估计器通过学习训练数据中的模式和规律来进行预测。因此,估计器需要在训练集上进行训练,并使用训练得到的模型参数对新数据进行预测。

常见的估计器包括分类器(classifier)、回归器(regresser)、聚类器(clusterer)。

管道(pipeline)

了解了分类器和估计器,所以可以理解为在机器学习是由转换器(Transformer)和估计器(Estimator)按照一定顺序组合在一起的来完成了整个流程。

机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。Pipeline类提供了一种简单的方式来定义和管理机器学习任务的流程。

管道机制是按照封装顺序依次执行的一种机制,在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。且代码看上去更加简洁明确。这也意味着,很多个不同的数据集,只要处理成管道的输入形式,后续的代码就可以复用。(这里为我们未来的python文件拆分做铺垫),也就是把很多个类和函数操作写进一个新的pipeline中。

这符合编程中的一个非常经典的思想:don't repeat yourself。(dry原则),也叫做封装思想,我们之前提到过类似的思想的应用: 函数、类,现在我们来说管道。

Pipeline最大的价值和核心应用场景之一,就是与交叉验证和网格搜索等结合使用,来:

  1. 防止数据泄露: 这是在使用交叉验证时,Pipeline自动完成预处理并在每个折叠内独立fit/transform的关键优势。
  2. 简化超参数调优: 可以方便地同时调优预处理步骤和模型的参数。

下面我们将对我们的信贷数据集进行管道工程,重构整个代码。之所以提到管道,是因为后续你在阅读一些经典的代码的时候,尤其是官方文档,非常喜欢用管道来构建代码,甚至深度学习中也有类似的代码,初学者往往看起来很吃力。

代码演示

没有pipline的代码

# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")
 
 # 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据


# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)

# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名



# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
 
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。

# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集


from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
--- 1. 默认参数随机森林 (训练集 -> 测试集) ---
训练与预测耗时: 1.8623 秒

默认随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.77      0.97      0.86      1059
           1       0.79      0.30      0.43       441

    accuracy                           0.77      1500
   macro avg       0.78      0.63      0.64      1500
weighted avg       0.77      0.77      0.73      1500

默认随机森林 在测试集上的混淆矩阵:
[[1023   36]
 [ 309  132]]

pipeline的代码教学

导入库和数据加载
# 导入基础库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time # 导入 time 库
import warnings

# 忽略警告
warnings.filterwarnings("ignore")

# 设置中文字体和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 导入 Pipeline 和相关预处理工具
from sklearn.pipeline import Pipeline # 用于创建机器学习工作流
from sklearn.compose import ColumnTransformer # 用于将不同的预处理应用于不同的列
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler # 用于数据预处理(有序编码、独热编码、标准化)
from sklearn.impute import SimpleImputer # 用于处理缺失值

# 导入机器学习模型和评估工具
from sklearn.ensemble import RandomForestClassifier # 随机森林分类器
from sklearn.metrics import classification_report, confusion_matrix # 用于评估分类器性能
from sklearn.model_selection import train_test_split # 用于划分训练集和测试集


# --- 加载原始数据 ---
# 我们加载原始数据,不对其进行任何手动预处理
data = pd.read_csv('data.csv')

print("原始数据加载完成,形状为:", data.shape)
# print(data.head()) # 可以打印前几行看看原始数据
# --- 分离特征和标签 (使用原始数据) ---
y = data['Credit Default'] # 标签
X = data.drop(['Credit Default'], axis=1) # 特征 (axis=1 表示按列删除)

print("\n特征和标签分离完成。")
print("特征 X 的形状:", X.shape)
print("标签 y 的形状:", y.shape)

# --- 划分训练集和测试集 (在任何预处理之前划分) ---
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集

print("\n数据集划分完成 (预处理之前)。")
print("X_train 形状:", X_train.shape)
print("X_test 形状:", X_test.shape)
print("y_train 形状:", y_train.shape)
print("y_test 形状:", y_test.shape)
# --- 定义不同列的类型和它们对应的预处理步骤 ---
# 这些定义是基于原始数据 X 的列类型来确定的

# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)
object_cols = X.select_dtypes(include=['object']).columns.tolist()
# 识别原始的非 object 列 (通常是数值列)
numeric_cols = X.select_dtypes(exclude=['object']).columns.tolist()


# 有序分类特征 (对应你之前的标签编码)
# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意
# 这里的类别顺序需要和你之前映射的顺序一致
ordinal_features = ['Home Ownership', 'Years in current job', 'Term']
# 定义每个有序特征的类别顺序,这个顺序决定了编码后的数值大小
ordinal_categories = [
    ['Own Home', 'Rent', 'Have Mortgage', 'Home Mortgage'], # Home Ownership 的顺序 (对应1, 2, 3, 4)
    ['< 1 year', '1 year', '2 years', '3 years', '4 years', '5 years', '6 years', '7 years', '8 years', '9 years', '10+ years'], # Years in current job 的顺序 (对应1-11)
    ['Short Term', 'Long Term'] # Term 的顺序 (对应0, 1)
]
# 构建处理有序特征的 Pipeline: 先填充缺失值,再进行有序编码
ordinal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('encoder', OrdinalEncoder(categories=ordinal_categories, handle_unknown='use_encoded_value', unknown_value=-1)) # 进行有序编码
])
print("有序特征处理 Pipeline 定义完成。")


# 标称分类特征 (对应你之前的独热编码)
nominal_features = ['Purpose'] # 使用原始列名
# 构建处理标称特征的 Pipeline: 先填充缺失值,再进行独热编码
nominal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) # 进行独热编码, sparse_output=False 使输出为密集数组
])
print("标称特征处理 Pipeline 定义完成。")


# 连续特征 (对应你之前的众数填充 + 添加标准化)
# 从所有列中排除掉分类特征,得到连续特征列表
# continuous_features = X.columns.difference(object_cols).tolist() # 原始X中非object类型的列
# 也可以直接从所有列中排除已知的有序和标称特征
continuous_features = [f for f in X.columns if f not in ordinal_features + nominal_features]

# 构建处理连续特征的 Pipeline: 先填充缺失值,再进行标准化
continuous_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充缺失值 (复现你的原始逻辑)
    ('scaler', StandardScaler()) # 标准化,一个好的实践 (如果你严格复刻原代码,可以移除这步)
])
# --- 构建 ColumnTransformer ---
# 将不同的预处理应用于不同的列子集,构造一个完备的转化器
# ColumnTransformer 接收一个 transformers 列表,每个元素是 (名称, 转换器对象, 列名列表)
preprocessor = ColumnTransformer(
    transformers=[
        ('ordinal', ordinal_transformer, ordinal_features), # 对 ordinal_features 列应用 ordinal_transformer
        ('nominal', nominal_transformer, nominal_features), # 对 nominal_features 列应用 nominal_transformer
        ('continuous', continuous_transformer, continuous_features) # 对 continuous_features 列应用 continuous_transformer
    ],
    remainder='passthrough' # 如何处理没有在上面列表中指定的列。
                           # 'passthrough' 表示保留这些列,不做任何处理。
                           # 'drop' 表示丢弃这些列。
)

print("\nColumnTransformer (预处理器) 定义完成。")
# print(preprocessor) # 可以打印 preprocessor 对象看看它的结构
# --- 构建完整的 Pipeline ---
# 将预处理器和模型串联起来
# 使用你原代码中 RandomForestClassifier 的默认参数和 random_state
pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor), # 第一步:应用所有的预处理 (我们刚刚定义的 ColumnTransformer 对象)
    ('classifier', RandomForestClassifier(random_state=42)) # 第二步:随机森林分类器 (使用默认参数和指定的 random_state)
])

print("\n完整的 Pipeline 定义完成。")
# print(pipeline) # 可以打印 pipeline 对象看看它的结构
# --- 1. 使用 Pipeline 在划分好的训练集和测试集上评估 ---
# 完全模仿你原代码的第一个评估步骤

print("\n--- 1. 默认参数随机森林 (训练集 -> 测试集) ---") # 使用你原代码的输出文本
# import time # 引入 time 库 (已在文件顶部引入)

start_time = time.time() # 记录开始时间

# 在原始的 X_train, y_train 上拟合整个Pipeline
# Pipeline会自动按顺序执行 preprocessor 的 fit_transform(X_train),
# 然后用处理后的数据和 y_train 拟合 classifier
pipeline.fit(X_train, y_train)

# 在原始的 X_test 上进行预测
# Pipeline会自动按顺序执行 preprocessor 的 transform(X_test),
# 然后用处理后的数据进行 classifier 的 predict
pipeline_pred = pipeline.predict(X_test)

end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒") # 使用你原代码的输出格式

print("\n默认随机森林 在测试集上的分类报告:") # 使用你原代码的输出文本
print(classification_report(y_test, pipeline_pred))
print("默认随机森林 在测试集上的混淆矩阵:") # 使用你原代码的输出文本
print(confusion_matrix(y_test, pipeline_pred))

@浙大疏锦行

 


网站公告

今日签到

点亮在社区的每一天
去签到