图论
题目
117. 软件构建
拓扑排序:给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。
当然拓扑排序也要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。所以拓扑排序也是图论中判断有向无环图的常用方法。
本题使用 BFS 的拓扑排序思路
寻找出发边,特征是入度为0 出度为2,也就是没有边指向它,而它有两条边是指出去的。
接下来我给出拓扑排序的过程,其实就两步:
1. 找到入度为0 的节点,加入结果集
2. 将该节点从图中移除
循环以上两步,直到所有节点都在图中被移除了。
模拟过程
如果有环出现
这个图,我们只能将入度为0 的节点0 接入结果集。
之后,节点1、2、3、4 形成了环,找不到入度为0 的节点了,所以此时结果集里只有一个元素。
那么如果我们发现结果集元素个数不等于图中节点个数,我们就可以认定图中一定有有向环!
这也是拓扑排序判断有向环的方法。
#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {
int m, n, s, t;
cin >> n >> m;
// 记录入度
vector<int> inDegree(n, 0);
// 使用邻接表记录图依赖关系
unordered_map<int, vector<int>> umap;
// 记录结果
vector<int> res;
for (int i = 0; i < m; ++i) {
cin >> s >> t;
inDegree[t]++;
umap[s].push_back(t);
}
// 拓扑排序开始
queue<int> que;
// 寻找入度为0的元素加入队列
for (int i = 0; i < n; ++i) {
if (inDegree[i] == 0) que.push(i);
}
while (!que.empty()) {
// 当前节点
int cur = que.front();
que.pop();
res.push_back(cur);
// 遍历节点指向
for (int idx : umap[cur]) {
inDegree[idx]--; // 通过 入度-- 实现图中删除这个节点
if (inDegree[idx] == 0) que.push(idx);
}
}
// 若不等于n说明有向图中有环
if (res.size() == n) {
for (int i = 0; i < n-1; ++i) {
cout << res[i] << " ";
}
cout << res[n-1] << endl;
}
else cout << -1 << endl;
}
47. 参加科学大会(第六期模拟笔试)
最短路径 dijkstra 算法,求图中最短路径
思路
类似于 prim 算法,dijkstra 算法 同样是贪心的思路,不断寻找距离 源点最近的没有访问过的节点。
这里我也给出 dijkstra三部曲:
1. 第一步,选源点到哪个节点近且该节点未被访问过
2. 第二步,该最近节点被标记访问过
3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
在dijkstra算法中,同样有一个数组很重要,起名为:minDist。
minDist数组用来记录每一个节点距离源点的最小距离。
理解这一点很重要,也是理解 dijkstra 算法的核心所在。
朴素算法
初始化节点这里在强点一下 minDist数组的含义:记录所有节点到源点的最短路径,那么初始化的时候就应该初始为最大值,这样才能在后续出现最短路径的时候及时更新。
(图中,max 表示默认值,节点0 不做处理,统一从下标1 开始计算,这样下标和节点数值统一,方便大家理解,避免搞混)
源点(节点1) 到自己的距离为0,所以 minDist[1] = 0
此时所有节点都没有被访问过,所以 visited数组都为0
以下为dijkstra 三部曲
1、选源点到哪个节点近且该节点未被访问过,源点距离源点最近,距离为0,且未被访问。
2、该最近节点被标记访问过,标记源点访问过
3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:
更新 minDist数组,即:源点(节点1) 到 节点2 和 节点3的距离。
- 源点到节点2的最短距离为1,小于原minDist[2]的数值max,更新minDist[2] = 1
- 源点到节点3的最短距离为4,小于原minDist[3]的数值max,更新minDist[3] = 4
可能有录友问:为啥和 minDist[2] 比较?
再强调一下 minDist[2] 的含义,它表示源点到节点2的最短距离,那么目前我们得到了源点到节点2的最短距离为1,小于默认值max,所以更新。 minDist[3]的更新同理
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid[p1][p2] = val;
}
int start = 1;
int end = n;
std::vector<int> minDist(n + 1, INT_MAX);
std::vector<bool> visited(n + 1, false);
minDist[start] = 0;
//加上初始化
vector<int> parent(n + 1, -1);
for (int i = 1; i <= n; i++) {
int minVal = INT_MAX;
int cur = 1;
for (int v = 1; v <= n; ++v) {
if (!visited[v] && minDist[v] < minVal) {
minVal = minDist[v];
cur = v;
}
}
visited[cur] = true;
for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
parent[v] = cur; // 记录边
}
}
}
// 输出最短情况
for (int i = 1; i <= n; i++) {
cout << parent[i] << "->" << i << endl;
}
}