【Redis】持久化

发布于:2025-06-09 ⋅ 阅读:(15) ⋅ 点赞:(0)

持久化

Redis 支持 RDBAOF 两种持久化机制,持久化功能有效地避免因进程退出造成数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复

RDB

RDB 持久化是把当前进程数据生成快照保存到硬盘的过程,触发 RDB 持久化过程分为手动触发自动触发

触发机制

手动触发分别对应 savebgsave 命令:

  • save 命令:阻塞当前 Redis 服务器,直到 RDB 过程完成为止,对于内存比较大的实例造成长时间阻塞,基本不采用
  • bgsave 命令:Redis 进程执行 fork 操作创建子进程,RDB 持久化过程由子进程负责,完成后自动结束。阻塞只发生在 fork 阶段,一般时间很短。

Redis 内部的所有涉及 RDB 的操作都采用类似 bgsave 的方式。

除了手动触发之外,Redis 运行自动触发 RDB 持久化机制,这个触发机制才是在实战中有价值的。

  1. 使用 save 配置。如 “save m n” 表示 m 秒内数据集发生了 n 次修改,自动 RDB 持久化。
  2. 从节点进行全量复制操作时,主节点自动进行 RDB 持久化,随后将 RDB 文件内容发送给从节点。
  3. 执行 shutdown 命令关闭 Redis 时,执行 RDB 持久化。

流程说明

bgsave 是主流的 RDB 持久化方式,下图为其运作流程。
 bgsave 命令的运作流程

  1. 执行 bgsave 命令,Redis 父进程判断当前进程是否存在其他正在执行的子进程,如 RDB/AOF 子进程,如果存在 bgsave 命令直接返回。
  2. 父进程执行 fork 创建子进程,fork 过程中父进程会阻塞,通过 info stats 命令查看 latest_fork_usec 选项,可以获取最近一次 fork 操作的耗时,单位为微秒。
  3. 父进程 fork 完成后,bgsave 命令返回 “Background saving started” 信息并不再阻塞父进程,可以继续响应其他命令。
  4. 子进程创建 RDB 文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行 lastsave 命令可以获取最后一次生成 RDB 的时间,对应 info 统计的 rdb_last_save_time 选项。
  5. 进程发送信号给父进程表示完成,父进程更新统计信息。

RDB 文件的处理

  • 保存:RDB 文件保存再 dir 配置指定的目录(默认 /var/lib/redis/ )下,文件名通过 dbfilename 配置(默认 dump.rdb)指定。可以通过执行 config set dir {newDir} 和 config set dbfilename {newFilename} 运行期间动态执行,当下次运行时 RDB 文件会保存到新目录。
  • 压缩:Redis 默认采用 LZF 算法对生成的 RDB 文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数 config set rdbcompression {yes|no} 动态修改。

    虽然压缩 RDB 会消耗 CPU,但可以大幅降低文件的体积,方便保存到硬盘或通过网络发送到从节点,因此建议开启。

  • 校验:如果 Redis 启动时加载到损坏的 RDB 文件会拒绝启动。这时可以使用 Redis 提供的 redis-check-dump 工具检测 RDB 文件并获取对应的错误报告。

RDB 的优缺点

  • RDB 是一个紧凑压缩的二进制文件,代表 Redis 在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每 6 小时执行 bgsave 备份,并把 RDB 文件复制到远程机器或者文件系统中(如 hdfs)用于灾备。
  • Redis 加载 RDB 恢复数据远远快于 AOF 的方式。
  • RDB 方式数据没办法做到实时持久化 / 秒级持久化。因为 bgsave 每次运行都要执行 fork 创建子进程,属于重量级操作,频繁执行成本过高。
  • RDB 文件使用特定二进制格式保存,Redis 版本演进过程中有多个 RDB 版本,兼容性可能有风险。

AOF

AOF(Append Only File)持久化:以独立日志的方式记录每次写命令,重启时再重新执行 AOF 文件中的命令达到恢复数据的目的。

AOF 的主要作用是解决了数据持久化的实时性,目前已经是 Redis 持久化的主流方式。理解掌握好 AOF 持久化机制对我们兼顾数据安全性和性能非常有帮助。

使用 AOF

开启 AOF 功能需要设置配置:appendonly yes,默认不开启。AOF 文件名通过 appendfilename 配置(默认是 appendonly.aof)设置。

保存目录同 RDB 持久化方式一致,通过 dir 配置指定。AOF 的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如下图所示。
 AOF 工作流程

  1. 所有的写入命令会追加到 aof_buf(缓冲区)中。
  2. AOF 缓冲区根据对应的策略向硬盘做同步操作。
  3. 随着 AOF 文件越来越大,需要定期对 AOF 文件进行重写,达到压缩的目的。
  4. 当 Redis 服务器启动时,可以加载 AOF 文件进行数据恢复。

命令写入

AOF 命令写入的内容直接是文本协议格式。例如 set hello world 这条命令,在 AOF 缓冲区会追加如下文本(原文示例文本,按实际呈现):

*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n

此处遵守 Redis 格式协议,Redis 选择文本协议可能的原因:文本协议具备较好的兼容性;实现简单;具备可读性。

  • AOF 过程中为什么需要 aof_buf 这个缓冲区?

Redis 使用单线程响应命令,如果每次写 AOF 文件都直接同步硬盘,性能从内存的读写变成 IO 读写,必然会下降。先写入缓冲区可以有效减少 IO 次数,同时,Redis 还可以提供多种缓冲区同步策略,让用户根据自己的需求做出合理的平衡。

文件同步

Redis 提供了多种 AOF 缓冲区同步文件策略,由参数 appendfsync 控制,不同值的含义如下表所示。

** AOF 缓冲区同步文件策略**

可配置值 说明
always 命令写入 aof_buf 后调用 fsync 同步,完成后返回
everysec 命令写入 aof_buf 后只执行 write 操作,不进行 fsync。每秒由同步线程进行 fsync。
no 命令写入 aof_buf 后只执行 write 操作,由 OS 控制 fsync 频率。

系统调用 writefsync 说明

  • write 操作会触发延迟写(delayed write)机制。Linux 在内核提供页缓冲区用来提供硬盘 IO 性能。write 操作在写入系统缓冲区后立即返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区 页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
  • Fsync 针对单个文件操作,做强制硬盘同步,fsync 将阻塞直到数据写入到硬盘。

文件策略说明:

  • 配置为 always 时,每次写入都要同步 AOF 文件,性能很差,在一般的 SATA 硬盘上,只能支持大约几百 TPS 写入。除非是非常重要的数据,否则不建议配置。
  • 配置为 no 时,由于操作系统同步策略不可控,虽然提高了性能,但数据丢失风险大增,除非数据重要性极低,一般不建议配置。
  • 配置为 everysec,是默认配置,也是推荐配置,兼顾了数据安全性和性能。理论上最多丢失 1 秒的数据。

重写机制

随着命令不断写入 AOF,文件会越来越大,为了解决这个问题,Redis 引入 AOF 重写机制压缩文件体积。AOF 文件重写是把 Redis 进程内的数据转化为写命令同步到新的 AOF 文件。

重写后的 AOF 为什么可以变小?有如下原因

  • 进程内已超时的数据不再写入文件。
  • 旧的 AOF 中的无效命令,例如 del、hdel、srem 等重写后将会删除,只需要保留数据的最终版本。
  • 多条写操作合并为一条,例如 lpush list a、lpush list b、lpush list c 可以合并为 lpush list a b c。

较小的 AOF 文件一方面降低了硬盘空间占用,一方面可以提升启动 Redis 时数据恢复的速度。

AOF 重写过程可以手动触发和自动触发:

  • 手动触发:调用 bgrewriteaof 命令。
  • 自动触发:根据 auto - aof - rewrite - min - size 和 auto - aof - rewrite - percentage 参数确定自动触发时机。
    • auto - aof - rewrite - min - size:表示触发重写 AOF 的最小文件大小,默认为 64MB。
    • auto - aof - rewrite - percentage:代表当前 AOF 占用大小相比较上次重写时增加的比例。

当触发 AOF 重写时,下图介绍它的运行流程。
在这里插入图片描述

  1. 执行 AOF 重写请求。
    • 如果当前进程正在执行 AOF 重写,请求不执行。如果当前进程正在执行 bgsave 操作,重写命令延迟到 bgsave 完成之后再执行。
  2. 父进程执行 fork 创建子进程。
  3. 重写
    • 主进程 fork 之后,继续响应其他命令。所有修改操作写入 AOF 缓冲区并根据 appendfsync 策略同步到硬盘,保证旧 AOF 文件机制正确。
    • 子进程只有 fork 之前的所有内存信息,父进程中需要将 fork 之后这段时间的修改操作写入 aof_rewrite_buf 缓冲区。
  4. 子进程根据内存快照,将命令合并到新的 AOF 文件中。
  5. 子进程完成重写后:
    • 新文件写入后,子进程发送信号给父进程。
    • 父进程把 AOF 重写缓冲区内容临时保存的命令追加到新 AOF 文件中。
    • 用新 AOF 文件替换老 AOF 文件。

启动时数据恢复

当 Redis 启动时,会根据 RDB 和 AOF 文件的内容,进行数据恢复,如下图所示。

在这里插入图片描述

总结

  1. Redis 提供了两种持久化方案:RDB 和 AOF。
  2. RDB 视为内存的快照,产生的内容更加紧凑,占用空间较小,恢复时速度更快。但产生 RDB 的开销较大,不适合进行实时持久化,一般用于冷备和主从复制。
  3. AOF 视为对修改命令保存,在恢复时需要重放命令。并且有重写机制来定期压缩 AOF 文件。
  4. RDB 和 AOF 都使用 fork 创建子进程,利用 Linux 子进程拥有父进程内存快照的特点进行持久化,尽可能不影响主进程继续处理后续命令。