python训练day33 神经网络的训练

发布于:2025-06-19 ⋅ 阅读:(15) ⋅ 点赞:(0)

 基础知识:

  1. 梯度下降
    → 思想:像下山一样找最低点(最小误差)。
    → 做法:看哪个方向最陡(算梯度),往那个方向走一小步(更新参数),反复走直到谷底。

  2. 激活函数
    → 作用:给神经网络“开关”和“弯道”。
    → 为什么:没有它,神经网络只能画直线(线性),有了才能画曲线(非线性),解决复杂问题。

  3. 损失函数
    → 作用:告诉AI“错得多离谱”。
    → 例子:预测房价,真实100万,模型猜80万,损失函数说“差了20万”。

  4. 优化器
    → 作用:梯度下降的“智能导航版”。
    → 功能:基础版:走最陡方向(SGD);升级版:防抖动(Momentum)、自动调步伐(Adam)

  5. 神经网络
    → 本质:模仿人脑的数学网络。
    → 结构:输入层 → 接数据(如像素);隐藏层 → 层层提取特征(核心);输出层 → 给答案(如分类)→ 关键:靠权重(连接强度)和激活函数学习。

 数据准备

# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 打印下尺寸
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放
# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)

模型架构定义

定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。

定义层数+定义前向传播顺序

import torch
import torch.nn as nn
import torch.optim as optim
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Module
    def __init__(self): # 初始化函数
        super(MLP, self).__init__() # 调用父类的初始化函数
 # 前三行是八股文,后面的是自定义的

        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型
model = MLP()

模型层的写法有很多,relu也可以不写,在后面前向传播的时候计算下即可,因为relu其实不算一个层,只是个计算而已。

    # def forward(self,x): #前向传播
    #     x=torch.relu(self.fc1(x)) #激活函数
    #     x=self.fc2(x) #输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy
    #     return x

模型训练

定义损失函数和优化器

# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)

# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)

开始循环训练

在训练的时候,可以同时观察每个epoch训练完后测试集的表现:测试集的loss和准确度

# 训练模型
num_epochs = 20000 # 训练的轮数

# 用于存储每个 epoch 的损失值
losses = []

for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始
    # 前向传播
    outputs = model.forward(X_train)   # 显式调用forward函数
    # outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
    loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签

    # 反向传播和优化
    optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
    loss.backward() # 反向传播计算梯度
    optimizer.step() # 更新参数

    # 记录损失值
    losses.append(loss.item())

    # 打印训练信息
    if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

如果你重新运行上面这段训练循环,模型参数、优化器状态和梯度会继续保留,导致训练结果叠加,模型参数和优化器状态(如动量、学习率等)不会被重置。这会导致训练从之前的状态继续,而不是从头开始

可视化结果

import matplotlib
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

@浙大疏锦行


网站公告

今日签到

点亮在社区的每一天
去签到