rknn优化教程(三)

发布于:2025-06-23 ⋅ 阅读:(15) ⋅ 点赞:(0)

1. 前述

OK,这一篇博客将完整给出最后的优化教程,包括代码设计。

首先有这样的目录结构:

./rknn_engine
├── include
│   ├── def
│   │   └── rknn_define.h
│   └── rknn_engine.h
├── src
│   ├── common
│   │   ├── rknn_data.h
│   │   └── rknn_functions.hpp
│   ├── inference
│   │   ├── inference.cpp
│   │   └── inference.h
│   ├── postprocess
│   │   ├── postprocess.cpp
│   │   └── postprocess.h
│   ├── preprocess
│   │   ├── preprocess.cpp
│   │   └── preprocess.h
│   ├── rknn_engine.cpp
│   └── task
│       ├── base_task.h
│       ├── pool_task.cpp
│       ├── pool_task.h
│       ├── single_task.cpp
│       ├── single_task.h
│       └── task_define.h
├── xmake.lua
└── xmake_repo

10 directories, 18 files

其实这里只给出了detection的部分设计,其他的segment和pose就是对应扩充一下就可以了。我觉得还是很简单的……

2. 部分代码

就给出一些代码示意吧:

Inference::init

bool Inference::init(const rknn_binary &model_data)
    {
        int ret = rknn_init(&m_rknnCtx, const_cast<char *>(&model_data[0]), static_cast<uint32_t>(model_data.size()), 0, nullptr);
        if (ret < 0)
        {
            spdlog::error("RKNN初始化失败, ret={}", ret);
            return false;
        }

        m_isInited = true;

        // 配置运行在什么核心上
        ret = rknn_set_core_mask(m_rknnCtx, rk3588_npu[m_ctxIndex++ % NPU_NUMS]);
        if (ret != RKNN_SUCC)
        {
            spdlog::error("rknn_set_core_mask failed, ret:{}", ret);
            return false;
        }

        // 获取版本信息
        rknn_sdk_version version;
        ret = rknn_query(m_rknnCtx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version));
        if (ret < 0)
        {
            spdlog::error("RKNN查询版本失败, ret={}", ret);
            return false;
        }
        spdlog::info("RKNN API version: {}", version.api_version);
        spdlog::info("RKNN Driver version: {}", version.drv_version);

        // 获取输入输出的个数
        rknn_input_output_num io_num;
        ret = rknn_query(m_rknnCtx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
        if (ret != RKNN_SUCC)
        {
            spdlog::error("RKNN查询输入输出失败, ret={}", ret);
            return false;
        }
        spdlog::info("模型的输入数量: {}, 输出数量: {}", io_num.n_input, io_num.n_output);

        // 模型的输入属性
        m_modelParams.m_nInput = io_num.n_input;
        for (uint32_t index = 0; index < io_num.n_input; ++index)
        {
            rknn_tensor_attr attr{0};
            attr.index = index;
            ret = rknn_query(m_rknnCtx, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
            if (ret != RKNN_SUCC)
            {
                spdlog::error("RKNN查询输入属性失败, ret={}", ret);
                return false;
            }

            logTensorAttr(attr);
            m_modelParams.m_inputAttrs.push_back(attr);
        }

        // 模型的输出属性
        m_modelParams.m_nOutput = io_num.n_output;
        for (uint32_t index = 0; index < io_num.n_output; ++index)
        {
            rknn_tensor_attr attr{0};
            attr.index = index;
            ret = rknn_query(m_rknnCtx, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
            if (ret != RKNN_SUCC)
            {
                spdlog::error("RKNN查询输出属性失败, ret={}", ret);
                return false;
            }
            logTensorAttr(attr);
            m_modelParams.m_outputAttrs.push_back(attr);
        }

        // 判断是否是量化的
        auto &out1_attr = m_modelParams.m_outputAttrs[0];
        if (out1_attr.qnt_type == RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC && out1_attr.type == RKNN_TENSOR_INT8)
        {
            m_modelParams.m_isFloat = false;
        }
        else
        {
            m_modelParams.m_isFloat = true;
        }

        // 获得宽高和通道
        auto &in1_attr = m_modelParams.m_inputAttrs[0];
        if (in1_attr.fmt == RKNN_TENSOR_NCHW)
        {
            spdlog::info("model is NCHW input fmt.");
            m_modelParams.m_modelChannel = in1_attr.dims[1];
            m_modelParams.m_modelHeight = in1_attr.dims[2];
            m_modelParams.m_modelWidth = in1_attr.dims[3];
        }
        else
        {
            spdlog::info("model is NHWC input fmt.");
            m_modelParams.m_modelChannel = in1_attr.dims[3];
            m_modelParams.m_modelHeight = in1_attr.dims[1];
            m_modelParams.m_modelWidth = in1_attr.dims[2];
        }
        spdlog::info("model input height:{} width:{} channel:{}",
                     m_modelParams.m_modelHeight, m_modelParams.m_modelWidth, m_modelParams.m_modelChannel);

        spdlog::info("RKNN初始化成功!");

        return true;
    }

SingleTask::work

bool SingleTask::work(const cv::Mat &img, std::vector<DetectionResult> &dets)
    {
         前处理 //
        m_preprocess.run(img, m_pImgBuff);

         推理 //
        // input
        rknn_input inputs[m_modelParams.m_nInput];
        memset(inputs, 0, sizeof(inputs));
        inputs[0].index = 0;
        inputs[0].type = RKNN_TENSOR_UINT8;
        inputs[0].fmt = RKNN_TENSOR_NHWC;
        inputs[0].size = m_imgSize;
        inputs[0].buf = m_pImgBuff;

        // output
        rknn_output outputs[m_modelParams.m_nOutput];
        memset(outputs, 0, sizeof(outputs));
        for (uint32_t index = 0; index < m_modelParams.m_nOutput; ++index)
        {
            outputs[index].index = index;
            outputs[index].want_float = m_modelParams.m_isFloat;
        }

        m_inference.run(inputs, outputs);

         后处理 //
        m_postprocess->run(outputs);

        int width = img.cols;
        int height = img.rows;
        auto scale = m_preprocess.getScale();
        auto &labels = m_postprocess->getLabels();
        auto &results = m_postprocess->detectionResult();
        int label_count = static_cast<int>(labels.size());

        for (auto &result : results)
        {
            DetectionResult rd;
            int id = result.m_classId < 0 ? -1 : (result.m_classId < label_count ? result.m_classId : -1);
            rd.m_className = id < 0 ? "unknown" : labels[id];
            rd.m_confidence = result.m_confidence;
            rd.m_box.x = static_cast<int>(result.m_x * scale);
            rd.m_box.x = clamp_i(rd.m_box.x, 0, width);
            rd.m_box.y = static_cast<int>(result.m_y * scale);
            rd.m_box.y = clamp_i(rd.m_box.y, 0, height);
            int w = static_cast<int>(result.m_w * scale);
            int h = static_cast<int>(result.m_h * scale);
            rd.m_box.w = clamp_i(w, 0, width - rd.m_box.x);
            rd.m_box.h = clamp_i(h, 0, height - rd.m_box.y);
            dets.push_back(rd);
        }

        // release output
        rknn_outputs_release(m_inference.rknnContext(), m_modelParams.m_nOutput, outputs);

        return true;
    }

PoolTask::onDetectionResult

void PoolTask::onDetectionResult(TaskData &&task_data, std::vector<DetectionResult> &&dets)
    {
        TaskResult res{true, std::move(task_data), std::move(dets)};
        list<TaskResult> tmp_res;

        {
            lock_guard<mutex> lg(m_mutexOutput);
            m_taskResults[res.m_taskData.m_taskId] = std::move(res);

            while (true)
            {
                if (m_taskResults[m_outputIndex].m_isGet)
                {
                    auto &res_data = m_taskResults[m_outputIndex];
                    tmp_res.emplace_back(std::move(res_data));
                    res_data.m_isGet = false;
                    ++m_outputIndex;
                }
                else
                {
                    break;
                }
            }
        }

        // 通过这个方式进行拼接,不在一个锁里面耗费时间
        if (!tmp_res.empty())
        {
            lock_guard<mutex> lg(m_mutexCb);
            m_cbResults.splice(m_cbResults.end(), tmp_res);
        }
    }

3. 说明

完整代码将放在原力推上。
可访问下载地址进行下载。


网站公告

今日签到

点亮在社区的每一天
去签到