复习和复现
今天重新复习了一下Linux中的面向对象/分离/分层思想,并且重新理解一下昨天学习的总线,platform_driver 和 platform_device 。
使用设备树来实现LED驱动
这里主要先来看一下有关设备树的语法部分,一个根结点下面的结点,如果含有compatile属性,就会生成相应的platform_device , 如果根节点下的结点的compatile属性中含有simple-bus , "arm,amba-bus" , “simple-mfd” , "isa" , "pci"等。该结点下的子节点也会生成对应的platform_device,看看图中mytest结点的compatile属性中含有simple-bus , 那么其子节点mytest@0就会生成对应的platform_device , 反之如i2c , spi结点的子节点就不会生成对应的platform_device。
分析流程
下面是大概的简要流程框图。
使用设备树来匹配platform_driver的一般流程
设备树中 compatible = "atk,my_led"
↓
of_platform_populate 创建 platform_device
↓
platform_driver_register 注册驱动
↓
platform_match 匹配 compatible
↓
调用 myled_probe()
下面这个图是用来匹配的几个要素
1、通过 driver_override
强制匹配
如果 platform_device
中设置了 driver_override
,则该字段会被用作强制绑定,只有与该字段字符串完全相同的 platform_driver.name
才会匹配成功。这种方式绕过了其他所有匹配逻辑,用于特定调试或临时需求。
/* When driver_override is set, only bind to the matching driver */
if (pdev->driver_override)
return !strcmp(pdev->driver_override, drv->name);
2、通过设备树中的 compatible
匹配
如果 platform_device
是由设备树生成的,并且驱动中定义了 of_match_table
,内核会优先使用设备树节点中的 compatible
属性与驱动的 of_device_id
表进行匹配。这是设备树时代最常用、最可靠的匹配方式。
/* Attempt an OF style match first */
if (of_driver_match_device(dev, drv))
return 1;
3、通过 platform_device_id
匹配
如果设备不是通过设备树生成,而是通过手动注册的 platform_device
,则系统会使用设备的 .name
字符串在驱动的 id_table
表中查找匹配项。
/* Then try to match against the id table */
if (pdrv->id_table)
return platform_match_id(pdrv->id_table, pdev) != NULL;
4、通过 device.name
与 driver.name
直接匹配
如果以上方式都未命中,内核会最后尝试直接比较 platform_device.name
与 platform_driver.driver.name
是否一致。
(strcmp(pdev->name, drv->name) == 0)
Linux内核关于匹配的源代码如下
static int platform_match(struct device *dev, struct device_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct platform_driver *pdrv = to_platform_driver(drv);
/* When driver_override is set, only bind to the matching driver */
if (pdev->driver_override)
return !strcmp(pdev->driver_override, drv->name);
/* Attempt an OF style match first */
if (of_driver_match_device(dev, drv))
return 1;
/* Then try ACPI style match */
if (acpi_driver_match_device(dev, drv))
return 1;
/* Then try to match against the id table */
if (pdrv->id_table)
return platform_match_id(pdrv->id_table, pdev) != NULL;
/* fall-back to driver name match */
return (strcmp(pdev->name, drv->name) == 0);
}
编写流程
那么我们编写这种方法的时候,就可以不用使用之前设置板子引脚资源的board_demo.c和led_resource.h两个文件。主要编写设备树文件.dts , chip_demo_gpio.c , led_template_drv.c
1、编写设备树文件.dts
找到各个板子的设备树文件,并将自己需要的设备树文件编写进去,设置compatile属性(让内核自动生成platform_device)。
#define GROUP_PIN(g , p) ((g<<16) | (p))
/ {
myled@0{
compatible = "my , myled";
pin = <GROUP_PIN(3 , 1)>;
};
myled@1{
compatible = "my , myled";
pin = <GROUP_PIN(5 , 2)>;
};
};
2、编写chip_demo_gpio.c
这部分代码主要编写platform_driver结构体,并且要使用设备树在该结构体中的.driver成员中设置一个成员函数.of_match_table。这里不知道如何写这个,需要在内核其他代码中查找一下该函数的用法。模仿下面函数:
static const struct of_device_id imx_mmdc_dt_ids[] = {
{ .compatible = "fsl,imx6q-mmdc", .data = (void *)&imx6q_data},
{ .compatible = "fsl,imx6qp-mmdc", .data = (void *)&imx6qp_data},
{ /* sentinel */ }
};
static struct platform_driver imx_mmdc_driver = {
.driver = {
.name = "imx-mmdc",
.of_match_table = imx_mmdc_dt_ids,
},
.probe = imx_mmdc_probe,
.remove = imx_mmdc_remove,
};
改写:
static const struct of_device_id myled_match[] = {
{ .compatible = "my , myled" },
{},
};
static struct platform_driver my_led_drv = {
.probe = my_led_drv_probe,
.remove = my_led_drv_remove,
.driver = {
.name = "my_led",
.of_match_table = myled_match,
},
};
3、led_template_drv.c
这部分不用需要改。按照之前的代码即可。
设备树编写LED驱动完整代码
1、chip_demo_gpio.c
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/of.h>
#include <asm/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include "led_resource.h"
#include "led_opr.h"
static int g_ledpins[100];
static int g_ledcnt = 0;
void led_device_create(int minor);
void led_device_destroy(int minor);
void register_led_operations(struct fed_operations *opr);
static int board_demo_led_init(int which)
{
printk("%s \n" , __FUNCTION__);
printk("init gpio : group %d , pin %d \n" , GROUP(g_ledpins[which]) , PIN(g_ledpins[which]));
switch (GROUP(g_ledpins[which])) {
case 0:
{
printk("init pin of group 0...\n");
break;
}
case 1:
{
printk("init pin of group 1...\n");
break;
}
case 2:
{
printk("init pin of group 2...\n");
break;
}
}
return 0;
}
static int board_demo_led_ctl(int which , char status)
{
//printk("%s :%d \n" , __FUNCTION__ , status);
printk("set led %s: group %d , pin %d \n" , status ? "on" : "off" , GROUP(g_ledpins[which]) , PIN(g_ledpins[which]));
//printk("set led : group %d , pin %d \n" , GROUP(led_rsc->pin) , PIN(led_rsc->pin));
switch (PIN(g_ledpins[which])) {
case 0:
{
printk("set pin of group 0...\n");
break;
}
case 1:
{
printk("set pin of group 1...\n");
break;
}
case 2:
{
printk("set pin of group 2...\n");
break;
}
}
return 0;
}
static struct fed_operations board_demo_led_opr = {
.num = 1,
.init = board_demo_led_init,
.ctl = board_demo_led_ctl,
};
struct fed_operations *get_board_led_opr(void)
{
return &board_demo_led_opr;
}
static int my_led_drv_probe(struct platform_device *pdev)
{
/* get group and pin */
int err = 0;
int led_pin;
struct device_node * np;
np = pdev->dev.of_node;
if(!np)
return -1;
err = of_property_read_u32(np, "pin", &led_pin);
g_ledpins[g_ledcnt] = led_pin;
/* device_create */
led_device_create(g_ledcnt);
g_ledcnt++;
return 0;
}
static int my_led_drv_remove(struct platform_device *pdev)
{
int err = 0;
int led_pin;
int i;
struct device_node * np;
np = pdev->dev.of_node;
if(!np)
return -1;
err = of_property_read_u32(np, "pin", &led_pin);
for(i = 0 ; i < g_ledcnt ; i++)
{
if(g_ledpins[i] == led_pin)
{
led_device_destroy(i);
g_ledpins[i] = -1;
break;
}
}
for(i = 0 ; i < g_ledcnt ; i++)
{
if(g_ledpins[i] != -1)
break;
}
if(i == g_ledcnt)
g_ledcnt = 0;
return 0;
}
static const struct of_device_id myled_match[] = {
{ .compatible = "my , myled" },
{},
};
static struct platform_driver my_led_drv = {
.probe = my_led_drv_probe,
.remove = my_led_drv_remove,
.driver = {
.name = "my_led",
.of_match_table = myled_match,
},
};
static int __init led_device_init(void)
{
int err;
register_led_operations(&board_demo_led_opr);
err = platform_driver_register(&my_led_drv);
return 0;
}
static void __exit led_device_exit(void)
{
platform_driver_unregister(&my_led_drv);
}
module_init(led_device_init);
module_exit(led_device_exit);
MODULE_LICENSE("GPL");
2、 led_template_drv.c
#include <linux/module.h> // 最基本模块宏
#include <linux/kernel.h> // printk
#include <linux/init.h> // __init/__exit
#include <linux/fs.h> // register_chrdev 等
#include <linux/uaccess.h> // copy_to_user, copy_from_user
#include <linux/types.h> // dev_t, bool 等类型
#include <linux/device.h>
#include "led_opr.h"
static int major = 0;
static struct class *myled_class;
struct fed_operations *p_led_opr;
/* funciton */
static ssize_t led_drv_read (struct file *file, char __user *buf , size_t size, loff_t * offset)
{
printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
printk("read from drivers:%s %s\n" , __FILE__ , __FUNCTION__ );
return 0;
}
/* write(fd , &val , 1) */
static ssize_t led_drv_write (struct file *file, const char __user *buf , size_t size, loff_t * offset)
{
unsigned char status;
unsigned int ret;
struct inode * inode = file_inode(file);
int minor = iminor(inode);
printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
ret = copy_from_user(&status, buf, 1);
/* minior and status */
p_led_opr->ctl(minor , status);
return 1;
}
static int led_drv_open (struct inode *node, struct file *file)
{
int minor = iminor(node);
printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
/* init LED */
p_led_opr->init(minor);
return 0;
}
static int led_drv_close (struct inode *node, struct file *file)
{
// printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
return 0;
}
/* create struct file_operations */
static struct file_operations myled_drv =
{
.owner = THIS_MODULE,
.open = led_drv_open,
.read = led_drv_read,
.write = led_drv_write,
.release = led_drv_close,
};
/* register_chrdev */
static int __init led_init(void)
{
major = register_chrdev(0 , "led_drv", &myled_drv);
/* do not need mknod */
if(!myled_class)
{
myled_class = class_create(THIS_MODULE, "led_class");
if (IS_ERR(myled_class)) {
printk("failed to allocate class\n");
unregister_chrdev(major, "led_class");
return PTR_ERR(myled_class);
}
}
/* struct device *device_create(struct class *class, struct device *parent,
dev_t devt, void *drvdata, const char *fmt, ...) */
//p_led_opr = get_board_led_opr();
return 0;
}
void led_device_create(int minor)
{
device_create(myled_class , NULL , MKDEV(major, minor) , NULL , "myled%d" , minor); /* create node /dev/myled */
}
EXPORT_SYMBOL(led_device_create);
void led_device_destroy(int minor)
{
device_destroy(myled_class , MKDEV(major, minor));
}
EXPORT_SYMBOL(led_device_destroy);
void register_led_operations(struct fed_operations *opr)
{
p_led_opr = opr;
}
EXPORT_SYMBOL(register_led_operations);
/* entry function */
static void __exit led_exit(void)
{
/* distroy
void device_destroy(struct class *class, dev_t devt)*/
printk("%s %s %d \n", __FILE__ , __FUNCTION__ , __LINE__);
class_destroy(myled_class);
unregister_chrdev(major, "led_drv");
return;
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
//#warning "MODULE_LICENSE included in led_template_drv.c"
makefile
# 内核源码路径
KERN_DIR := /home/dd/RK3568/SDK/linux/rk3568_linux_sdk/kernel
CURRENT_PATH := $(shell pwd)
# 驱动模块目标
obj-m := led_template_drv.o chip_demo_gpio.o
# 源文件列表(注意 .o 后缀)
led_template_drv1-objs := led_template_drv.o chip_demo_gpio.o
# 交叉编译工具链
CROSS_COMPILE ?= /home/dd/RK3568/SDK/linux/rk3568_linux_sdk/prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
ARCH ?= arm64
# 默认目标:编译模块 + 用户程序
build: kernel_modules ledtest
# 编译内核模块
kernel_modules:
$(MAKE) -C $(KERN_DIR) M=$(CURRENT_PATH) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) modules
# 编译用户态测试程序
ledtest: ledtest.c
$(CROSS_COMPILE)gcc -o ledtest ledtest.c
# 清理所有编译产物
clean:
$(MAKE) -C $(KERN_DIR) M=$(CURRENT_PATH) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) clean
rm -f ledtest
编写字符驱动程序的三种方法
1、资源和驱动在同一个文件
2、资源使用platform_device指定,驱动用platform_driver实现
3、资源用设备树指定。驱动在platform_driver实现
设备树编写LED驱动具体操作
找到单板的设备树文件(如rk3568操作文件中讲到其设备树文件在~/RK3568/SDK/linux/rk3568_linux_sdk/kernel/arch/arm64/boot/dts/rockchip/rk3568-atk-evb1-ddr4-v10.dtsi),保存完之后切换到SDK上层目录执行./build.sh kernel 编译一下新设备树的内核文件。
将/kernel中的boot.img文件导入到PC端,然后将板子切换到LOADER模式,烧入新的boot.img。
重启加载之后就可以进入到/sys/firmware/devicetree/base/文件中,输入ls -ld *myled* , 可以看到加载完成之后的设备结点,使用cat命令可以看到里面的内容。
进入到/sys/devices/platform/myled文件中,加载驱动程序之后,该目录底下会自动生成一个driver目录。
可以看到这个目录的类型是l,也就是软连接,进入软连接的目录就可以看到其适配的设备文件myled@0 , myled@1了。接着使用ls /dev/myled*查看挂载好的设备文件。便可以使用ledtest对驱动进行读写操作等。