基于paddleDetect的半监督目标检测实战

发布于:2025-07-17 ⋅ 阅读:(17) ⋅ 点赞:(0)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

相关介绍

PaddleDetection是一个基于PaddlePaddle的目标检测端到端开发套件,在提供丰富的模型组件和测试基准的同时,注重端到端的产业落地应用,通过打造产业级特色模型|工具、建设产业应用范例等手段,帮助开发者实现数据准备、模型选型、模型训练、模型部署的全流程打通,快速进行落地应用。

主要模型效果示例如下(点击标题可快速跳转):

通用目标检测 小目标检测 旋转框检测 3D目标物检测
人脸检测 2D关键点检测 多目标追踪 实例分割
车辆分析——车牌识别 车辆分析——车流统计 车辆分析——违章检测 车辆分析——属性分析
行人分析——闯入分析 行人分析——行为分析 行人分析——属性分析 行人分析——人流统计

同时,PaddleDetection提供了模型的在线体验功能,用户可以选择自己的数据进行在线推理。

前提条件

实验环境

Package                Version       Editable project location
---------------------- ------------- -----------------------------------------------
albumentations         1.3.1
matplotlib             3.7.1
numba                  0.56.4
numpy                  1.23.5
onnx                   1.14.0
opencv-python          4.5.5.64
opencv-python-headless 4.11.0.86
packaging              23.1
paddle-bfloat          0.1.7
paddle2onnx            1.0.6
paddleclas             2.5.1
paddledet              0.0.0
paddlepaddle-gpu       2.4.2.post116
paddleseg              2.8.0         
paddleslim             1.1.1
paddlex                1.3.7
pandas                 2.0.1
Pillow                 9.5.0
pip                    23.0.1
protobuf               3.20.0
pycocotools            2.0.7
scikit-image           0.22.0
scikit-learn           1.2.2
scipy                  1.10.1
setuptools             66.0.0
torch                  1.10.1
torchvision            0.11.2

安装环境

  • 具体安装步骤,请查阅官方安装文档:https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8.1/docs/tutorials/INSTALL_cn.md

项目地址

git clone --branch v2.7.0 https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection-2.7.0

在这里插入图片描述

使用paddleDetect的半监督方法训练自己的数据集

准备数据

准备一个所需要训练的coco格式数据集。

在这里插入图片描述

分割数据集

paddlex --split_dataset --format COCO --dataset_dir ./trainning_dataset/coco/ --val_value 0.05 --test_value 0.05
  • –dataset_dir:coco数据集所在的文件夹路径。

在这里插入图片描述

配置参数文件

PaddleDetection-2.7.0/configs/semi_det/denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi010.yml

可根据实际情况修改参数,一般不需要修改,直接使用默认参数即可。

_BASE_: [
  '../../ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml',
  '../_base_/coco_detection_percent_10.yml',
]
log_iter: 50
snapshot_epoch: 5
# weights: output/denseteacher_ppyoloe_plus_crn_l_coco_semi010/model_final
weights: output/best_model

epochs: &epochs 200
cosine_epochs: &cosine_epochs 240


### pretrain and warmup config, choose one and comment another
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/ppyoloe_plus_crn_l_80e_coco_sup010.pdparams # mAP=45.7
semi_start_iters: 0
ema_start_iters: 0
use_warmup: &use_warmup False

# pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams
# semi_start_iters: 5000
# ema_start_iters: 3000
# use_warmup: &use_warmup True


### global config
use_simple_ema: True
ema_decay: 0.9996
ssod_method: DenseTeacher
DenseTeacher:
  train_cfg:
    sup_weight: 1.0
    unsup_weight: 1.0
    loss_weight: {distill_loss_cls: 1.0, distill_loss_iou: 2.5, distill_loss_dfl: 0., distill_loss_contrast: 0.1}
    contrast_loss:
      temperature: 0.2
      alpha: 0.9
      smooth_iter: 100
    concat_sup_data: True
    suppress: linear
    ratio: 0.01
  test_cfg:
    inference_on: teacher


### reader config
batch_size: &batch_size 8
worker_num: 2
SemiTrainReader:
  sample_transforms:
    - Decode: {}
    - RandomDistort: {}
    - RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
    - RandomFlip: {}
    - RandomCrop: {} # unsup will be fake gt_boxes
  weak_aug:
    - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], is_scale: true, norm_type: none}
  strong_aug:
    - StrongAugImage: {transforms: [
        RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
        RandomErasingCrop: {},
        RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
        RandomGrayscale: {prob: 0.2},
      ]}
    - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], is_scale: true, norm_type: none}
  sup_batch_transforms:
    - BatchRandomResize: {target_size: [640], random_size: True, random_interp: True, keep_ratio: False}
    - Permute: {}
    - PadGT: {}
  unsup_batch_transforms:
    - BatchRandomResize: {target_size: [640], random_size: True, random_interp: True, keep_ratio: False}
    - Permute: {}
  sup_batch_size: *batch_size
  unsup_batch_size: *batch_size
  shuffle: True
  drop_last: True
  collate_batch: True

EvalReader:
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: [640, 640], keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
    - Permute: {}
  batch_size: 2

TestReader:
  inputs_def:
    image_shape: [3, 640, 640]
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: [640, 640], keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
    - Permute: {}
  batch_size: 1


### model config
architecture: PPYOLOE
norm_type: sync_bn
ema_black_list: ['proj_conv.weight']
custom_black_list: ['reduce_mean']
PPYOLOE:
  backbone: CSPResNet
  neck: CustomCSPPAN
  yolo_head: PPYOLOEHead
  post_process: ~

eval_size: ~ # means None, but not str 'None'
PPYOLOEHead:
  fpn_strides: [32, 16, 8]
  grid_cell_scale: 5.0
  grid_cell_offset: 0.5
  static_assigner_epoch: -1 #
  use_varifocal_loss: True
  loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5}
  static_assigner:
    name: ATSSAssigner
    topk: 9
  assigner:
    name: TaskAlignedAssigner
    topk: 13
    alpha: 1.0
    beta: 6.0
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 300
    score_threshold: 0.01
    nms_threshold: 0.7


### other config
epoch: *epochs
LearningRate:
  base_lr: 0.01
  schedulers:
  - !CosineDecay
    max_epochs: *cosine_epochs
    use_warmup: *use_warmup
  - !LinearWarmup
    start_factor: 0.001
    epochs: 3

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005 # dt-fcos 0.0001
    type: L2
  clip_grad_by_norm: 1.0 # dt-fcos clip_grad_by_value

PaddleDetection-2.7.0/configs/semi_det/_base_/coco_detection_percent_10.yml

这里要修改对应数据集的路径,以及数据集的类别数

  • num_classes: 1(数据集的类别数)
  • image_dir: JPEGImages
  • anno_path: train.json
  • dataset_dir: ./trainning_dataset/coco/
metric: COCO
num_classes: 1

# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
  !SemiCOCODataSet
    image_dir: JPEGImages
    anno_path: train.json
    dataset_dir: ./trainning_dataset/coco/
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
  !SemiCOCODataSet
    image_dir: JPEGImages
    anno_path: test.json
    dataset_dir: ./trainning_dataset/coco/
    data_fields: ['image']
    supervised: False

EvalDataset:
  !COCODataSet
    image_dir: JPEGImages
    anno_path: val.json
    dataset_dir: ./trainning_dataset/coco/
    allow_empty: true

TestDataset:
  !ImageFolder
    anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)
    dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path'

训练

conda activate paddleDetect

export CUDA_VISIBLE_DEVICES=0 # 设置1张可用的卡

nohup python PaddleDetection-2.7.0/tools/train.py -c PaddleDetection-2.7.0/configs/semi_det/denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi010.yml -o use_gpu=true --eval --amp &

训练的权重会保存在./output文件夹里。

在这里插入图片描述

预测

conda activate paddleDetect

export CUDA_VISIBLE_DEVICES=0 # 设置1张可用的卡

python PaddleDetection-2.7.0/tools/infer.py -c PaddleDetection-2.7.0/configs/semi_det/denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi010.yml -o weights=output/best_model.pdparams --infer_dir=test_imgs/ --output_dir infer_output

预测出来的图片会保存在./infer_output文件夹里。

在这里插入图片描述

导出

conda activate paddleDetect

python PaddleDetection-2.7.0/tools/export_model.py -c PaddleDetection-2.7.0/configs/semi_det/denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi010.yml -o weights=output/best_model.pdparams -o trt=True

导出的权重会保存在./output_inference文件夹里。

在这里插入图片描述

推理

conda activate paddleDetect

export CUDA_VISIBLE_DEVICES=0 # 设置1张可用的卡

python PaddleDetection-2.7.0/deploy/python/infer.py --model_dir=./output_inference/denseteacher_ppyoloe_plus_crn_l_coco_semi010/ --image_dir=test_imgs/ --output_dir=infer_output_pdimodel --device=GPU

推理出来的图片会保存在./infer_output_pdimodel文件夹里。
在这里插入图片描述

参考文献

[1] PaddleDetection 源代码地址:https://github.com/PaddlePaddle/PaddleDetection.git
[2] https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8.1/configs/ppyoloe/README_cn.md
[3] https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.8.1/configs/semi_det
[4] https://github.com/Megvii-BaseDetection/DenseTeacher
[5] https://arxiv.org/abs/2207.02541v2


网站公告

今日签到

点亮在社区的每一天
去签到