卷积神经网络:LeNet模型

发布于:2025-07-24 ⋅ 阅读:(21) ⋅ 点赞:(0)

一、LeNet简介

LeNet由Yann Lecun 提出,是一种经典的卷积神经网络,是现代卷积神经网络的起源之一,主要用于解决手写数字识别问题。LeNet又称LeNet-5,具有一个输入层,两个卷积层,两个池化层,3个全连接层(其中最后一个全连接层为输出层)。

各个结构作用:

卷积层:提取特征图的特征,浅层的卷积提取的是一些纹路、轮廓等浅层的空间特征,对于深层的卷积,可以提取出深层次的空间特征。

池化层: 1、降低维度 2、最大池化或者平均池化,在本网络结构中使用的是最大池化。

全连接层: 1、输出结果 2、位置:一般位于CNN网络的末端。 3、操作:需要将特征图reshape成一维向量,再送入全连接层中进行分类或者回归。

LeNet-5,其结构简洁且具有明确的层次划分,专为处理 32×32 像素的单通道(灰度)图像设计,具体层结构如下:

  1. 输入层

    • 接收 32×32×1 的灰度图像(如手写数字图片)。
  2. C1:卷积层

    • 卷积核尺寸:5×5
    • 卷积核数量:6
    • 输出特征图尺寸:28×28×6(因无填充,32-5+1=28)
    • 作用:提取图像的低级特征(如边缘、拐角、纹理等)。
  3. S2:池化层(下采样层)

    • 采用平均池化,池化窗口 2×2,步长 2
    • 输出特征图尺寸:14×14×6(28÷2=14)
    • 作用:降低特征图尺寸,减少计算量,同时增强特征的平移不变性。
  4. C3:卷积层

    • 卷积核尺寸:5×5
    • 卷积核数量:16
    • 输出特征图尺寸:10×10×16(14-5+1=10)
    • 作用:结合 S2 层的特征,提取更复杂的中级特征(如数字的局部结构)。
  5. S4:池化层

    • 平均池化,窗口 2×2,步长 2
    • 输出特征图尺寸:5×5×16(10÷2=5)
    • 作用:进一步降维,保留关键特征。
  6. C5:卷积层(等效全连接层)

    • 卷积核尺寸:5×5
    • 卷积核数量:120
    • 输出特征图尺寸:1×1×120(5-5+1=1)
    • 作用:因输出为 1×1,等效于全连接层,整合 S4 层的特征,输出 120 维特征向量。
  7. F6:全连接层

    • 输入:120 维
    • 输出:84 维
    • 作用:对 C5 层的特征进行非线性变换,进一步抽象特征。
  8. 输出层

    • 采用径向基函数(RBF)作为激活函数(原始设计),输出 10 维向量(对应 0-9 共 10 个数字)。
    • 现代应用中常替换为 Softmax 激活函数,输出类别概率分布。

最简单的LeNet模型。

import torch
import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        # 定义卷积层
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)

        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

        # 定义激活函数
        self.relu = nn.ReLU()

    def forward(self, x):
        # 卷积层 + 池化层 + 激活函数
        x = self.relu(self.conv1(x))
        x = F.avg_pool2d(x, kernel_size=2, stride=2)
        x = self.relu(self.conv2(x))
        x = F.avg_pool2d(x, kernel_size=2, stride=2)

        # 展平特征图
        x = torch.flatten(x, 1)

        # 全连接层
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)

        return x

# 创建模型实例
model = LeNet()

# 打印模型结构
print(model)

二、Mnist数据集

MNIST是一个手写数字集合,该数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。

MNIST数据集简介

  1. 该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。

  2. 数据集包含了0-9共10类手写数字图片,每张图片都做了尺寸归一化,都是28x28大小的灰度图。

  3. MNIST数据集包含四个部分: 训练集图像:train-images-idx3-ubyte.gz(9.9MB,包含60000个样本) 训练集标签:train-labels-idx1-ubyte.gz(29KB,包含60000个标签) 测试集图像:t10k-images-idx3-ubyte.gz(1.6MB,包含10000个样本) 测试集标签:t10k-labels-idx1-ubyte.gz(5KB,包含10000个标签)

import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import struct

# 图像预处理:将图像转换为 (784, 1) 的张量
transform = transforms.Compose([
    transforms.ToTensor(),               # 转为 [0,1] 范围的 Tensor
    transforms.Lambda(lambda x: x.view(-1, 1))  # 展平为 (784, 1)
])

# 加载 MNIST 训练集和测试集
train_dataset = datasets.MNIST(
    root='./dataset',
    train=True,
    transform=transform,
    download=True
)

test_dataset = datasets.MNIST(
    root='./dataset',
    train=False,
    transform=transform,
    download=True
)

# 使用 DataLoader 批量加载
train_loader = DataLoader(
    dataset=train_dataset,
    batch_size=64,
    shuffle=True
)

test_loader = DataLoader(
    dataset=test_dataset,
    batch_size=64,
    shuffle=False
)

# ✅ 打印训练集和测试集的样本数量
print(f"训练集样本数量: {len(train_dataset)}")
print(f"测试集样本数量: {len(test_dataset)}")

# ✅ 控制台输出矩阵的代码
print("=" * 140)
print("图像矩阵的十六进制表示(非零值用红色标出):")
data = train_dataset[0][0].squeeze().numpy()  # 获取第一张图像并转换为 numpy 数组
rows = 28
columns = 28

counter = 0
for i in range(rows):
    row = data[i * columns: (i + 1) * columns]
    for value in row:
        integer_part = int(value * 100)
        # 防止溢出 unsigned short (0~65535)
        integer_part = max(0, min(65535, integer_part))
        hex_bytes = struct.pack('H', integer_part)
        hex_string = hex_bytes.hex()
        if hex_string == '0000':
            print(hex_string + ' ', end="")
        else:
            print(f'\033[31m{hex_string}\033[0m' + " ", end="")
        counter += 1
        if counter % 28 == 0:
            print()  # 换行
print("=" * 140)

# 示例:取出第一个 batch 的数据
for images, labels in train_loader:
    print("Batch Images Shape:", images.shape)    # [batch_size, 784, 1]
    print("Batch Labels Shape:", labels.shape)    # [batch_size]

    # 显示第一张图像
    img = images[0].reshape(28, 28).numpy()
    plt.imshow(img, cmap='gray')
    plt.title(f"Label: {labels[0].item()}")
    plt.axis('off')
    plt.show()

    break  # 只显示一个 batch

三、LeNet手写数字识别

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import time
from matplotlib import pyplot as plt

pipline_train = transforms.Compose([
    # 随机旋转图片
    # MNIST 是手写数字数据集,左右翻转可能造成语义错误(例如,6 和 9 会被混淆)。所以不建议使用
    # transforms.RandomHorizontalFlip(),
    # 将图片尺寸resize到32x32
    transforms.Resize((32, 32)),
    # 将图片转化为Tensor格式
    transforms.ToTensor(),
    # 正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
    transforms.Normalize((0.1307,), (0.3081,))
])
pipline_test = transforms.Compose([
    # 将图片尺寸resize到32x32
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
# 下载数据集
train_set = datasets.MNIST(root="./dataset", train=True, download=True, transform=pipline_train)
test_set = datasets.MNIST(root="./dataset", train=False, download=True, transform=pipline_test)
# 加载数据集
trainloader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=False)


# 构建LeNet模型
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.relu = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.maxpool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


# 创建模型,部署gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LeNet().to(device)
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)


def train_runner(model, device, trainloader, optimizer, epoch):
    model.train()
    total_loss = 0
    total_correct = 0
    total_samples = 0

    for i, (inputs, labels) in enumerate(trainloader):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = F.cross_entropy(outputs, labels)
        predict = outputs.argmax(dim=1)
        correct = (predict == labels).sum().item()

        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        total_correct += correct
        total_samples += labels.size(0)

        if i % 100 == 0:
            print(f"Epoch {epoch}, Batch {i}, Loss: {loss.item():.6f}, Accuracy: {correct / labels.size(0) * 100:.2f}%")

    avg_loss = total_loss / len(trainloader)
    avg_acc = total_correct / total_samples
    print(f"Epoch {epoch} - Average Loss: {avg_loss:.6f}, Accuracy: {avg_acc * 100:.2f}%")
    return avg_loss, avg_acc


def test_runner(model, device, testloader):
    # 模型验证, 必须要写, 否则只要有输入数据, 即使不训练, 它也会改变权值
    # 因为调用eval()将不启用 BatchNormalization 和 Dropout, BatchNormalization和Dropout置为False
    model.eval()
    # 统计模型正确率, 设置初始值
    correct = 0.0
    test_loss = 0.0
    total = 0
    # torch.no_grad将不会计算梯度, 也不会进行反向传播
    with torch.no_grad():
        for data, label in testloader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label).item()
            predict = output.argmax(dim=1)
            # 计算正确数量
            total += label.size(0)
            correct += (predict == label).sum().item()
        # 计算损失值
        print("test_avarage_loss: {:.6f}, accuracy: {:.6f}%".format(test_loss / total, 100 * (correct / total)))


# 调用
epoch = 5
Loss = []
Accuracy = []
for epoch in range(1, epoch + 1):
    print("start_time", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
    loss, acc = train_runner(model, device, trainloader, optimizer, epoch)
    Loss.append(loss)
    Accuracy.append(acc)
    test_runner(model, device, testloader)
    print("end_time: ", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), '\n')

print('Finished Training')

plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(Loss)
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')

plt.subplot(1, 2, 2)
plt.plot(Accuracy)
plt.title('Training Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.show()






网站公告

今日签到

点亮在社区的每一天
去签到