C++高效实现轨迹规划、自动泊车、RTS游戏、战术迂回包抄、空中轨迹、手术机器人、KD树

发布于:2025-07-25 ⋅ 阅读:(18) ⋅ 点赞:(0)

C++ 算法汇总

基于C++的城市道路场景

以下是基于C++的城市道路场景中车辆紧急变道轨迹生成的实现方法和示例代码。内容涵盖轨迹规划算法、数学建模及代码实现,适用于自动驾驶或驾驶辅助系统开发。

基于多项式曲线的轨迹生成

采用五次多项式(Quintic Polynomial)生成平滑轨迹,满足起点和终点的位置、速度、加速度约束:

数学模型
横向位移($y$)与纵向位移($x$)的关系:
$ y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 $

边界条件($t=0$为起点,$t=T$为终点):
$$ \begin{cases} y(0)=y_0, & y(T)=y_T \ y'(0)=v_{y0}, & y'(T)=v_{yT} \ y''(0)=a_{y0}, & y''(T)=a_{yT} \end{cases} $$

C++代码片段

#include <Eigen/Dense> // 使用Eigen求解线性方程组

struct State {
    double pos, vel, acc;
};

QuinticPolynomial solve_quintic(State start, State end, double T) {
    Eigen::MatrixXd A(6, 6);
    Eigen::VectorXd b(6);
    
    A << 0,    0,      0,        0,        0,        1,
         0,    0,      0,        0,        1,        0,
         0,    0,      0,        2,        0,        0,
         T*T*T*T*T, T*T*T*T, T*T*T,   T*T,     T,      1,
         5*T*T*T*T, 4*T*T*T, 3*T*T,    2*T,     1,      0,
         20*T*T*T,  12*T*T,   6*T,      2,      0,      0;
    
    b << start.pos, start.vel, start.acc, 
         end.pos, end.vel, end.acc;
    
    Eigen::VectorXd coeffs = A.colPivHouseholderQr().solve(b);
    return {coeffs[5], coeffs[4], coeffs[3], coeffs[2], coeffs[1], coeffs[0]};
}

基于Frenet坐标系的轨迹规划

在Frenet坐标系下分解纵向($s$)和横向($d$)运动,避免直接处理复杂笛卡尔坐标:

步骤

  1. 路径离散化:将参考线(如车道中心线)离散为点集
  2. 生成候选轨迹:在目标车道横向偏移量$d$处生成多项式轨迹
  3. 碰撞检测:检查轨迹与障碍物的最小距离

代码示例

vector<Trajectory> generate_candidates(const Road& road, double target_d) {
    vector<Trajectory> candidates;
    for (double t = 1.0; t <= 3.0; t += 0.5) { // 不同时间周期
        QuinticPolynomial lat = solve_quintic(
            {current_d, lateral_vel, lateral_acc},
            {target_d, 0.0, 0.0}, t);
        
        Trajectory traj;
        for (double s = current_s; s <= current_s + 50; s += 0.5) {
            double d = lat.eval(s - current_s);
            auto xy = road.to_cartesian(s, d);
            traj.points.push_back(xy);
        }
        candidates.push_back(traj);
    }
    return candidates;
}

动态障碍物避让逻辑

引入动态障碍物的预测位置进行轨迹评分:

评分函数
$$ \text{score} = w_1 \cdot \text{jerk} + w_2 \cdot \text{time} + w_3 \cdot \text{distance_to_obstacles} $$

实现示例

Trajectory select_best(vector<Trajectory>& candidates, const Obstacles& obs) {
    Trajectory best;
    double min_cost = INFINITY;
    
    for (const auto& traj : candidates) {
        double cost = 0.0;
        cost += 0.1 * calculate_jerk(traj);  // 舒适性
        cost += 0.3 * traj.duration();       // 效率
        cost += 0.6 * min_distance_to_obs(traj, obs); // 安全性
        
        if (cost < min_cost) {
            min_cost = cost;
            best = traj;
        }
    }
    return best;
}

完整实现需结合具体场景的HD地图和感知模块输出。以上代码需配合ROS或Autoware等框架实现完整功能。

停车场自动泊车的多段路径平滑规划

以下是基于C++的停车场自动泊车多段路径平滑规划实例,结合B样条曲线、贝塞尔曲线和优化算法实现路径平滑:

例1:基于三次B样条的直角转弯平滑

#include <vector>
#include <Eigen/Dense>
using namespace Eigen;

// 三次B样条基函数计算
double BsplineBasis(int i, int k, double t, const VectorXd& knots) {
    if (k == 1) return (t >= knots[i] && t < knots[i+1]) ? 1.0 : 0.0;
    double denom1 = knots[i+k-1] - knots[i];
    double denom2 = knots[i+k] - knots[i+1];
    double term1 = (denom1 != 0) ? (t - knots[i])/denom1 * BsplineBasis(i, k-1, t, knots) : 0;
    double term2 = (denom2 != 0) ? (knots[i+k] - t)/denom2 * BsplineBasis(i+1, k-1, t, knots) : 0;
    return term1 + term2;
}

// 生成平滑路径
VectorXd generateSmoothPath(const VectorXd& control_points) {
    VectorXd knots = VectorXd::LinSpaced(control_points.size()+4, 0, 1);
    VectorXd path(100);
    for (int i = 0; i < 100; ++i) {
        double t = i / 99.0;
        double point = 0;
        for (int j = 0; j < control_points.size(); ++j) {
            point += control_points[j] * BsplineBasis(j, 4, t, knots);
        }
        path[i] = point;
    }
    return path;
}

例2:贝塞尔曲线连接多段直线

struct Point { double x, y; };

Point quadraticBezier(Point p0, Point p1, Point p2, double t) {
    double mt = 1 - t;
    return {
        mt*mt*p0.x + 2*mt*t*p1.x + t*t*p2.x,
        mt*mt*p0.y + 2*mt*t*p1.y + t*t*p2.y
    };
}

vector<Point> smoothParkingPath(vector<Point> waypoints) {
    vector<Point> path;
    for (size_t i = 0; i < waypoints.size() - 2; i += 2) {
        for (int j = 0; j <= 20; ++j) {
            double t = j / 20.0;
            path.push_back(quadraticBezier(
                waypoints[i], 
                waypoints[i+1], 
                waypoints[i+2], t));
        }
    }
    return path;
}

例3:基于梯度下降的路径优化

#include <cmath>

double pathCost(const vector<double>& path) {
    double cost = 0;
    for (size_t i = 1; i < path.size(); ++i) {
        cost += pow(path[i] - path[i-1], 2); // 平滑项
        cost += pow(path[i] - 0.5, 2);       // 偏离惩罚
    }
    return cost;
}

vector<double> optimizePath(vector<double> init_path) {
    double learning_rate = 0.01;
    for (int iter = 0; iter < 1000; ++iter) {
        vector<double> gradient(init_path.size(), 0);
        for (size_t i = 1; i < init_path.size()-1; ++i) {
            gradient[i] = 2*(init_path[i] - init_path[i-1]) 
                        - 2*(init_path[i+1] - init_path[i])
                        + 2*(init_path[i] - 0.5);
        }
        for (size_t i = 0; i < init_path.size(); ++i) {
            init_path[i] -= learning_rate * gradient[i];
        }
    }
    return init_path;
}

例4:基于Dubins路径的平行泊车

struct DubinsPath {
    double start_x, start_y, start_theta;
    double end_x, end_y, end_theta;
    double curvature;
};

vector<Point> generateDubinsPath(DubinsPath params) {
    vector<Point> path;
    double step = 0.1;
    double L = sqrt(pow(params.end_x - params.start_x, 2) + 
                   pow(params.end_y - params.start_y, 2));
    int steps = static_cast<int>(L / step);
    
    for (int i = 0; i <= steps; ++i) {
        double t = i * step;
        double x = params.start_x + t * cos(params.start_theta);
        double y = params.start_y + t * sin(params.start_theta);
        path.push_back({x, y});
    }
    return path;
}

例5:基于多项式插值的垂直泊车

vector<Point> polynomialSmoothing(vector<Point> key_points) {
    vector<Point> smoothed_path;
    MatrixXd A(key_points.size(), 4);
    VectorXd bx(key_points.size()), by(key_points.size());
    
    for (size_t i = 0; i < key_points.size(); ++i) {
        double t = static_cast<double>(i) / (key_points.size()-1);
        A(i, 0) = 1.0; A(i, 1) = t; 
        A(i, 2) = t*t; A(i, 3) = t*t*t;
        bx[i] = key_points[i].x;
        by[i] = key_points[i].y;
    }
    
    VectorXd cx = A.colPivHouseholderQr().solve(bx);
    VectorXd cy = A.colPivHouseholderQr().solve(by);
    
    for (int i = 0; i <= 100; ++i) {
        double t = i / 100.0;
        double x = cx[0] + cx[1]*t + cx[2]*t*t + cx[3]*t*t*t;
        double y = cy[0] + cy[1]*t + cy[2]*t*t + cy[3]*t*t*t;
        smoothed_path.push_back({x, y});
    }
    return smoothed_path;
}


高速公路施工区域的动态改道规划

动态改道规划模型(C++示例)

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

struct RoadSegment {
    int id;
    double length;
    int capacity;
    int currentFlow;
};

void optimizeDiversion(vector<RoadSegment>& segments) {
    priority_queue<pair<double, int>> pq; // 拥堵系数优先队列
    for (auto& seg : segments) {
        double congestion = (double)seg.currentFlow / seg.capacity;
        pq.push({congestion, seg.id});
    }
    
    while (!pq.empty()) {
        auto [congestion, id] = pq.top();
        pq.pop();
        if (congestion > 0.7) { // 触发改道阈值
            cout << "重定向路段 " << id << " 的车流" << endl;
        }
    }
}

实时交通流监控系统

class TrafficMonitor {
private:
    vector<int> flowRates;
    const int CRITICAL_FLOW = 1500; // 车辆/小时
    
public:
    void updateFlow(int sensorId, int flow) {
        if (flowRates.size() <= sensorId) {
            flowRates.resize(sensorId+1);
        }
        flowRates[sensorId] = flow;
    }
    
    bool checkCongestion() {
        return any_of(flowRates.begin(), flowRates.end(), 
            [this](int f){ return f > CRITICAL_FLOW; });
    }
};

多目标优化算法

vector<int> findOptimalPath(const vector<vector<pair<int,int>>>& graph, 
                          int start, int end, 
                          const vector<int>& roadWorks) {
    
    vector<int> dist(graph.size(), INT_MAX);
    priority_queue<pair<int,int>> pq;
    dist[start] = 0;
    pq.push({0, start});
    
    while (!pq.empty()) {
        auto [d, u] = pq.top();
        pq.pop();
        if (u == end) break;
        
        for (auto [v, w] : graph[u]) {
            if (find(roadWorks.begin(), roadWorks.end(), v) != roadWorks.end()) {
                w *= 2; // 施工路段惩罚权重
            }
            if (dist[v] > dist[u] + w) {
                dist[v] = dist[u] + w;
                pq.push({-dist[v], v});
            }
        }
    }
    return reconstructPath(start, end, dist);
}

动态路径规划技术

基于强化学习的改道策略

class QLearningModel {
    unordered_map<string, double> qTable;
    double alpha = 0.1, gamma = 0.6;
    
public:
    string getState(const TrafficSnapshot& snapshot);
    
    void updateQValue(string state, string action, 
                     double reward, string nextState) {
        double oldValue = qTable[state+"_"+action];
        double maxNext = /* 计算下一状态最大值 */;
        qTable[state+"_"+action] = 
            oldValue + alpha*(reward + gamma*maxNext - oldValue);
    }
};

可变信息标志系统

void updateVMS(vector<VMS>& signs, const vector<Diversion>& routes) {
    for (auto& sign : signs) {
        auto nearest = findNearestDiversion(sign.position, routes);
        sign.displayMessage(nearest.alternativeRoute, 
                           nearest.estimatedDelay);
    }
}

施工区域管理方案

车道关闭协调系统

struct LaneClosure {
    int segmentId;
    time_t startTime;
    time_t endTime;
    int closedLanes;
};

void synchronizeClosures(vector<LaneClosure>& closures) {
    sort(closures.begin(), closures.end(), 
        [](auto& a, auto& b){ return a.startTime < b.startTime; });
    
    for (int i = 1; i < closures.size(); ++i) {
        if (closures[i].startTime < closures[i-1].endTime && 
            abs(closures[i].segmentId - closures[i-1].segmentId) < 5000) {
            closures[i].startTime = closures[i-1].endTime + 3600; // 延迟1小时
        }
    }
}

应急车辆优先通行

void handleEmergencyVehicle(int segmentId, 
                           vector<TrafficLight>& lights) {
    auto& tl = lights[segmentId];
    tl.setPriorityPhase();
    broadcastDiversion(segmentId, EMERGENCY_DETOUR);
}

交通影响评估模型

延误计算算法

double calculateDelay(const TrafficData& before, 
                    const TrafficData& during) {
    double totalDelay = 0;
    for (int i = 0; i < before.flow.size(); ++i) {
        double speedReduction = before.speed[i] - during.speed[i];
        totalDelay += during.flow[i] * speedReduction / 3600;
    }
    return totalDelay;
}

排放量估算

const double EMISSION_FACTOR = 2.3; // kg/veh-km

double estimateEmissions(double divertedDistance, 
                        int vehicleCount) {
    return divertedDistance * vehicleCount * EMISSION_FACTOR;
}

协同施工规划系统

资源分配优化

vector<ConstructionTeam> allocateTeams(
    const vector<WorkZone>& zones,
    const vector<ConstructionTeam>& teams) {
    
    vector<double> workloads(zones.size());
    transform(zones.begin(), zones.end(), workloads.begin(), 
             [](auto& z){ return z.estimatedWorkload; });
    
    vector<ConstructionTeam> allocation;
    for (int i = 0; i < teams.size(); ++i) {
        int zoneIdx = min_element(workloads.begin(), workloads.end()) 
                     - workloads.begin();
        allocation.push_back({teams[i].id, zones[zoneIdx].id});
        workloads[zoneIdx] += teams[i].productivity;
    }
    return allocation;
}

动态限速控制

自适应限速算法

int computeSpeedLimit(int segmentId, 
                     int baseSpeed, 
                     int visibility, 
                     int accidentRisk) {
    int reduction = 0;
    if (visibility < 100) reduction += 20;
    if (accidentRisk > 0.7) reduction += 30;
    return max(baseSpeed - reduction, 40);
}

改道效益评估

成本-效益分析模型

struct CostBenefit {
    double travelTimeSaved;
    double accidentReduction;
    double implementationCost;
    
    double score() const {
        return (travelTimeSaved * 25 + accidentReduction * 10000) 
               / implementationCost;
    }
};

void evaluateDiversion(const vector<DiversionOption>& options) {
    vector<CostBenefit> assessments;
    for (auto& opt : options) {
        CostBenefit cb;
        cb.travelTimeSaved = opt.baseTime - opt.diversionTime;
        assessments.push_back(cb);
    }
    sort(assessments.begin(), assessments.end(), 
        [](auto& a, auto& b){ return a.score() > b.score(); });
}

多时段改道策略

分时段流量预测

map<int, vector<double>> predictHourlyFlows(
    const HistoricalData& data, 
    int dayOfWeek) {
    
    map<int, vector<double>> predictions;
    for (int segId : data.segmentIds) {
        auto hist = data.getHistoricalFlows(segId, dayOfWeek);
        predictions[segId] = movingAverage(hist, 4);
    }
    return predictions;
}

协同信号控制

信号配时优化

vector<TrafficLight> coordinateSignals(
    const vector<Intersection>& intersections, 
    const DiversionPlan& plan) {
    
    vector<TrafficLight> adjusted;
    for (auto& inter : intersections) {
        TrafficLight tl = inter.trafficLight;
        if (plan.affectedIntersections.count(inter.id)) {
            tl.increaseGreenTime(plan.mainRoute);
            tl.decreaseGreenTime(plan.closedRoute);
        }
        adjusted.push_back(tl);
    }
    return adjusted;
}

驾驶员行为建模

路径选择概率

double routeChoiceProbability(double t1, double t2, 
                            double beta = 0.5) {
    return 1 / (1 + exp(beta * (t1 - t2)));
}

施工区安


网站公告

今日签到

点亮在社区的每一天
去签到