全文检索官网示例

发布于:2025-07-27 ⋅ 阅读:(18) ⋅ 点赞:(0)

链接地址:https://milvus.io/docs/zh/full_text_search_with_milvus.md
full_text_demo:

from typing import List
from __init__ import openai_client
import sys

from pymilvus import (
    MilvusClient,
    DataType,
    Function,
    FunctionType,
    AnnSearchRequest,
    RRFRanker,
)

# Connect to Milvus:连接到 Milvus
uri = "http://ip:19530"
collection_name = "full_text_demo"
client = MilvusClient(uri=uri)
print("连接成功")

# sys.exit()

analyzer_params = {"tokenizer": "standard", "filter": ["lowercase"]}

schema = MilvusClient.create_schema()
schema.add_field(
    field_name="id",
    datatype=DataType.VARCHAR,
    is_primary=True,
    auto_id=True,
    max_length=100,
)
schema.add_field(
    field_name="content",
    datatype=DataType.VARCHAR,
    max_length=65535,
    analyzer_params=analyzer_params,
    enable_match=True,  # Enable text matching
    enable_analyzer=True,  # Enable text analysis
)
schema.add_field(field_name="sparse_vector", datatype=DataType.SPARSE_FLOAT_VECTOR)
schema.add_field(
    field_name="dense_vector",
    datatype=DataType.FLOAT_VECTOR,
    dim=1536,  # Dimension for text-embedding-3-small
)
schema.add_field(field_name="metadata", datatype=DataType.JSON)

bm25_function = Function(
    name="bm25",
    function_type=FunctionType.BM25,
    input_field_names=["content"],
    output_field_names="sparse_vector",
)

schema.add_function(bm25_function)

# 创建索引
index_params = MilvusClient.prepare_index_params()
index_params.add_index(
    field_name="sparse_vector",
    index_type="SPARSE_INVERTED_INDEX",
    metric_type="BM25",
)
index_params.add_index(field_name="dense_vector", index_type="FLAT", metric_type="IP")

if client.has_collection(collection_name):
    client.drop_collection(collection_name)
client.create_collection(
    collection_name=collection_name,
    schema=schema,
    index_params=index_params,
)
print(f"Collection '{collection_name}' created successfully")


# openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "text-embedding-3-small"


def get_embeddings(texts: List[str]) -> List[List[float]]:
    if not texts:
        return []

    response = openai_client.embeddings.create(input=texts, model=model_name)
    return [embedding.embedding for embedding in response.data]


# Define indexes
index_params = MilvusClient.prepare_index_params()
index_params.add_index(
    field_name="sparse_vector",
    index_type="SPARSE_INVERTED_INDEX",
    metric_type="BM25",
)
index_params.add_index(field_name="dense_vector", index_type="FLAT", metric_type="IP")

# Drop collection if exist
if client.has_collection(collection_name):
    client.drop_collection(collection_name)
# Create the collection
client.create_collection(
    collection_name=collection_name,
    schema=schema,
    index_params=index_params,
)
print(f"Collection '{collection_name}' created successfully")


# Set up OpenAI for embeddings
openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "text-embedding-3-small"


# Define embedding generation function for reuse
def get_embeddings(texts: List[str]) -> List[List[float]]:
    if not texts:
        return []

    response = openai_client.embeddings.create(input=texts, model=model_name)
    return [embedding.embedding for embedding in response.data]

# Example documents to insert
documents = [
    {
        "content": "Milvus is a vector database built for embedding similarity search and AI applications.",
        "metadata": {"source": "documentation", "topic": "introduction"},
    },
    {
        "content": "Full-text search in Milvus allows you to search using keywords and phrases.",
        "metadata": {"source": "tutorial", "topic": "full-text search"},
    },
    {
        "content": "Hybrid search combines the power of sparse BM25 retrieval with dense vector search.",
        "metadata": {"source": "blog", "topic": "hybrid search"},
    },
]

# Prepare entities for insertion
entities = []
texts = [doc["content"] for doc in documents]
embeddings = get_embeddings(texts)

for i, doc in enumerate(documents):
    entities.append(
        {
            "content": doc["content"],
            "dense_vector": embeddings[i],
            "metadata": doc.get("metadata", {}),
        }
    )

# Insert data
client.insert(collection_name, entities)
print(f"Inserted {len(entities)} documents")


# Example query for semantic search
query = "How does Milvus help with similarity search?"

# Generate embedding for query
query_embedding = get_embeddings([query])[0]

# Semantic search using dense vectors
results = client.search(
    collection_name=collection_name,
    data=[query_embedding],
    anns_field="dense_vector",
    limit=5,
    output_fields=["content", "metadata"],
)
dense_results = results[0]

# Print results
print("\nDense Search (Semantic):")
for i, result in enumerate(dense_results):
    print(
        f"{i+1}. Score: {result['distance']:.4f}, Content: {result['entity']['content']}"
    )



网站公告

今日签到

点亮在社区的每一天
去签到