ABP VNext + Akka.NET:高并发处理与分布式计算

发布于:2025-08-10 ⋅ 阅读:(29) ⋅ 点赞:(0)

ABP VNext + Akka.NET:高并发处理与分布式计算 🚀

Actor 模型把高并发写入“分片→串行化”,把锁与竞态压力转回到代码层面的可控顺序处理;依托 Cluster.Sharding 横向扩容,Persistence 宕机可恢复,Streams 保障背压稳定吞吐;全程采用 Akka.Hosting + 显式启动 Sharding 的写法,弱化对版本特定扩展方法的耦合。⚙️



1)TL;DR ✍️

  • Actor + Sharding:按实体(DeviceId/OrderId…)顺序处理,避免热点锁与竞态;横向扩容靠分片重分布。🧩
  • Persistence(事件+快照):进程挂了可回放恢复;开发期可用内存存储,生产换 SQL/PG。💾
  • Streams 背压:入口 Source.Queue(..., Backpressure) + ActorRefWithAck 打通端到端背压闭环。🧯
  • Akka.HostingActorRegistry + IRequiredActor<T> 与 ABP/.NET 的 DI、日志无缝融合。🔌
  • 两套部署路径:本地多实例(静态种子) & K8s(Akka.Management + Cluster Bootstrap)。☸️

2)适用场景 🎯

  • IoT/日志/交易流水等 写多读少每实体需要严格顺序 的场景;
  • 需要 快速横向扩容自动失效转移进程级容错 的场景;
  • 希望把“拓扑/容错/限流/背压”收束到应用代码表达层的团队。

3)环境与依赖 🧰

  • .NET / ABP 版本矩阵

    • .NET 7 → ABP 7
    • .NET 8 → ABP 8.0+(推荐)
  • NuGet(核心)
    Akka, Akka.Hosting, Akka.Cluster, Akka.Cluster.Sharding,
    Akka.Persistence.Sql, Akka.Streams, Akka.Logger.Serilog, Akka.Serialization.Hyperion

  • 可选(K8s/管理)
    Akka.Management, Akka.Discovery.KubernetesApi

<ItemGroup>
  <PackageReference Include="Akka" Version="1.5.*" />
  <PackageReference Include="Akka.Hosting" Version="1.5.*" />
  <PackageReference Include="Akka.Cluster" Version="1.5.*" />
  <PackageReference Include="Akka.Cluster.Sharding" Version="1.5.*" />
  <PackageReference Include="Akka.Persistence.Sql" Version="1.5.*" />
  <PackageReference Include="Akka.Streams" Version="1.5.*" />
  <PackageReference Include="Akka.Logger.Serilog" Version="1.5.*" />
  <PackageReference Include="Akka.Serialization.Hyperion" Version="1.5.*" />
  <PackageReference Include="Akka.Management" Version="1.5.*" />
  <PackageReference Include="Akka.Discovery.KubernetesApi" Version="1.5.*" />
</ItemGroup>

4)目标架构与数据流(总览图)🗺️

HTTP/gRPC
Tell/Ask
ACK
Tell
Persist
Domain Events
Client
ABP AppService
IngressActor
Akka.Streams Graph
ShardRegion
DeviceActor #1
DeviceActor #2
DeviceActor #N
Journal/Snapshot
ABP EventBus

5)最小可跑骨架(单节点,内存持久化)🏃‍♂️

5分钟跑通闭环(不依赖外部 DB),再切换到 SQL/PG。

5.1 消息与分片提取器(稳定哈希)🔑

// Messages.cs
public interface IDeviceMsg { string DeviceId { get; } }
public sealed record Ingest(string DeviceId, double Value, DateTimeOffset Timestamp) : IDeviceMsg;
public sealed record GetCurrent(string DeviceId) : IDeviceMsg;
public sealed record CurrentState(string DeviceId, double Avg, long Count);

// 使用稳定的 HashCodeMessageExtractor,避免 string.GetHashCode() 的跨进程随机化
using Akka.Cluster.Sharding;
public sealed class DeviceMessageExtractor : HashCodeMessageExtractor
{
    public DeviceMessageExtractor(int shards) : base(shards) { }
    public override string EntityId(object message) => ((IDeviceMsg)message).DeviceId;
    public override object EntityMessage(object message) => message;
}

5.2 实体 Actor(顺序处理 + 快照 + 钝化)🧠

// DeviceEntityActor.cs
using Akka.Actor;
using Akka.Event;
using Akka.Persistence;
using Akka.Cluster.Sharding;

public sealed class DeviceEntityActor : ReceivePersistentActor
{
    private readonly ILoggingAdapter _log = Context.GetLogger();
    private double _sum; private long _count;

    public override string PersistenceId { get; }

    public DeviceEntityActor()
    {
        var entityId = Self.Path.Name;          // Sharding 注入
        PersistenceId = $"device-{entityId}";

        Command<Ingest>(cmd =>
        {
            Persist(cmd, e =>
            {
                _sum += e.Value; _count++;
                if (_count % 1000 == 0) SaveSnapshot((_sum, _count));
            });
        });

        Command<GetCurrent>(q =>
        {
            var avg = _count == 0 ? 0 : _sum / _count;
            Sender.Tell(new CurrentState(q.DeviceId, avg, _count));
        });

        // 自动钝化:与 remember-entities 互斥(见“生产配置”)
        Context.SetReceiveTimeout(TimeSpan.FromMinutes(5));
        Receive<ReceiveTimeout>(_ => Context.Parent.Tell(new Passivate(PoisonPill.Instance)));

        Recover<Ingest>(e => { _sum += e.Value; _count++; });
        Recover<SnapshotOffer>(s =>
        {
            var (sum, cnt) = ((double, long))s.Snapshot;
            _sum = sum; _count = cnt;
        });
    }
}

5.3 Streams 入口 + ACK 闭环(ActorRefWithAck)🔁

// Ingress messages for ACK protocol
public sealed record StreamInit();
public sealed record StreamAck();
public sealed record StreamComplete();
public sealed record StreamFail(Exception Cause);

// IngressActor.cs
using Akka.Actor;
using Akka.Cluster.Sharding;

public sealed class IngressActor : ReceiveActor
{
    private readonly IActorRef _region;

    public IngressActor(IActorRef region)
    {
        _region = region;

        Receive<StreamInit>(_ => Sender.Tell(new StreamAck()));         // 握手
        Receive<Ingest>(msg => { _region.Tell(msg); Sender.Tell(new StreamAck()); }); // 逐条ACK
        Receive<StreamComplete>(_ => Context.Stop(Self));
        Receive<StreamFail>(x => { Context.GetLogger().Error(x.Cause, "stream failed"); });
    }
}
// Streams wiring(Program/Module中)
using Akka.Streams;
using Akka.Streams.Dsl;

// 1) Materializer
var mat = SystemMaterializer.Get(system).Materializer;

// 2) Source.Queue:入口背压队列
var (queue, source) = Source
  .Queue<Ingest>(bufferSize: 10_000, OverflowStrategy.Backpressure)
  .PreMaterialize(mat);

// 3) 将流量通过 ActorRefWithAck 打给 IngressActor(由其负责ACK并Tell到Region)
var ingress = system.ActorOf(Props.Create(() => new IngressActor(region)), "ingress");

var ackSink = Sink.ActorRefWithAck<Ingest>(
    target: ingress,
    onInitMessage: new StreamInit(),
    ackMessage: new StreamAck(),
    onCompleteMessage: new StreamComplete(),
    onFailureMessage: ex => new StreamFail(ex)
);

// 4) 可选:分组/聚合后下发
source
  .GroupBy(1024, x => x.DeviceId)
  .GroupedWithin(500, TimeSpan.FromMilliseconds(50))
  .MergeSubstreams()
  .SelectMany(batch => batch) // 批内可先聚合降噪,再下发
  .RunWith(ackSink, mat);

// 在 ABP 层/Controller 中:await queue.OfferAsync(new Ingest(deviceId, value, DateTimeOffset.UtcNow));
5.3.1 端到端背压闭环 🧨
Client ABP AppService Source.Queue IngressActor ShardRegion DeviceEntityActor POST /ingest (deviceId, value) Offer(Ingest) 背压:当下游未ACK时 队列阻塞Offer Ingest Tell(Ingest) Deliver(Ingest) Persisted (event/snapshot) StreamAck Offer completed (backpressure released) 202 Accepted Client ABP AppService Source.Queue IngressActor ShardRegion DeviceEntityActor

5.4 Akka.Hosting:显式启动 Sharding + DI 注入 🧩

// Program.cs / YourAbpModule.ConfigureServices(...)
using Akka.Actor;
using Akka.Cluster.Sharding;
using Akka.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

// Marker type for ActorRegistry (避免直接暴露 ActorRef 原型类型)
public sealed class DeviceRegionKey {}

builder.Services.AddAkka("AppSystem", (akka, sp) =>
{
    // —— 统一日志到 Serilog ——
    akka.ConfigureLoggers(l =>
    {
        l.ClearLoggers();
        l.AddLogger<Akka.Logger.Serilog.SerilogLogger>();
    });

    // —— 开发环境:内存持久化(复制即可跑)——
    var devHocon = """
    akka {
      loglevel = "INFO"
      actor {
        provider = "cluster"
        default-mailbox {
          mailbox-type = "Akka.Dispatch.BoundedMailbox"
          mailbox-capacity = 20000
          mailbox-push-timeout-time = 2s
        }
        serializers {
          hyperion = "Akka.Serialization.HyperionSerializer, Akka.Serialization.Hyperion"
        }
      }
      remote.dot-netty.tcp { hostname = "0.0.0.0", port = 4053 }
      cluster { seed-nodes = ["akka.tcp://AppSystem@localhost:4053"], roles = ["api"] }
      persistence {
        journal.plugin = "akka.persistence.journal.inmem"
        snapshot-store.plugin = "akka.persistence.snapshot-store.inmem"
      }
      cluster.sharding { passivate-idle-entity-after = 5 m }
    }
    """;
    akka.AddHocon(devHocon, HoconAddMode.Append);

    // —— 显式启动 Sharding 并注入 Region —— 
    akka.WithActors((system, registry) =>
    {
        var sharding  = ClusterSharding.Get(system);
        var settings  = ClusterShardingSettings.Create(system);
        var region = sharding.Start(
            typeName: "device-entity",
            entityProps: Props.Create(() => new DeviceEntityActor()),
            settings: settings,
            messageExtractor: new DeviceMessageExtractor(shards: 64)
        );

        registry.TryRegister<DeviceRegionKey>(region);

        var ingress = system.ActorOf(Props.Create(() => new IngressActor(region)), "ingress");
        registry.TryRegister<IngressActor>(ingress);
    });
});

6)与 ABP 应用层对接(IRequiredActor + Ask/Tell)🔗

// DeviceAppService.cs
using Akka.Actor;
using Akka.Hosting;
using Microsoft.Extensions.Configuration;
using Volo.Abp.Application.Services;

public class DeviceAppService : ApplicationService
{
    private readonly IActorRef _region;
    private readonly IActorRef _ingress;
    private readonly TimeSpan _askTimeout;

    public DeviceAppService(IRequiredActor<DeviceRegionKey> region,
                            IRequiredActor<IngressActor> ingress,
                            IConfiguration cfg)
    {
        _region = region.ActorRef;
        _ingress = ingress.ActorRef;
        _askTimeout = TimeSpan.FromSeconds(cfg.GetValue("Akka:AskTimeoutSeconds", 2));
    }

    // 写多:走 Streams 队列 -> IngressActor(ACK背压闭环)
    public async Task IngestAsync(string deviceId, double value)
    {
        _ingress.Tell(new Ingest(deviceId, value, DateTimeOffset.UtcNow));
        await Task.CompletedTask;
    }

    // 查少:必要时 Ask(统一超时/重试策略)
    public Task<CurrentState> GetAsync(string deviceId)
        => _region.Ask<CurrentState>(new GetCurrent(deviceId), _askTimeout);
}

7)生产切换:SQL Server 持久化 🧱

开发用内存持久化;生产切换到 SQL/PG。以 SQL Server 为例(同理可替换为 PostgreSQL/MySQL,对应 provider-name 也要换成各自 Linq2Db ProviderName)。

# appsettings.Production.hocon(或用 AddHocon Append)
akka {
  persistence {
    journal {
      plugin = "akka.persistence.journal.sql"
      sql {
        class = "Akka.Persistence.Sql.Journal.SqlWriteJournal, Akka.Persistence.Sql"
        connection-string = "Server=localhost;Database=AkkaDemo;User Id=sa;Password=Your_password123;"
        provider-name = "SqlServer.2019"
      }
    }
    snapshot-store {
      plugin = "akka.persistence.snapshot-store.sql"
      sql {
        class = "Akka.Persistence.Sql.Snapshot.SqlSnapshotStore, Akka.Persistence.Sql"
        connection-string = "Server=localhost;Database=AkkaDemo;User Id=sa;Password=Your_password123;"
        provider-name = "SqlServer.2019"
      }
    }
  }

  # 生产常见:开启记忆实体,禁用自动钝化
  cluster.sharding {
    remember-entities = on
    # passivate-idle-entity-after 将被自动禁用
  }
}

⚠️ 上线前:按官方脚本初始化 Journal/Snapshot 架构与索引
Remember-Entities × 钝化:开启 remember-entities=on禁用自动钝化;需要停用实体,请用 Passivate 显式停止并取消记忆。🧹


8)序列化与安全(Hyperion)🛡️

akka.actor {
  serializers {
    hyperion = "Akka.Serialization.HyperionSerializer, Akka.Serialization.Hyperion"
  }
  # 建议只绑定到你的消息基类型,而不是 System.Object
  serialization-bindings {
    "Your.Namespace.IDeviceMsg, Your.Assembly" = hyperion
  }
  serialization-settings.hyperion {
    # 需要时可开启版本容忍、已知类型等(示例)
    # version-tolerance = on
    # knownTypesProvider = "Your.Namespace.KnownTypesProvider, Your.Assembly"
  }
}

只绑定消息基类型,避免误序列化;若强 Schema 演进诉求,生产可切 Protobuf。📦


9)Actor 生命周期 🧬

First message for EntityId
Count % 1000 == 0
Snapshot saved
ReceiveTimeout / Manual Passivate
PoisonPill
Re-activation by ShardRegion (on demand)
Idle
Active
Snapshotting
Passivating
Stopped

10)Sharding 重分布 📦

Yes
No
Node Scale-out
Join Cluster
Shard Coordinator Rebalance
Hot Shards?
Move Shards to New Node
Keep Current Placement
Entities Recreated on New Host
State Restore via Events/Snapshots
Traffic Resumes

11)K8s 拓扑 ☸️

K8s
Deployment:API
Deployment:Worker
Cluster Bootstrap
Cluster Bootstrap
Gossip
Gossip
Service API
Service Management
Pod Worker-1
Pod Worker-2
Pod Worker-3
Pod API-1
Pod API-2
Client

12)可靠性与容错 🛠️

  • 监督策略:业务可恢复异常 Resume;不可恢复 Restart/Stop
  • 幂等:命令带 CommandId,Actor 内滑窗去重;
  • 熔断:外部调用 Actor 使用 CircuitBreaker
  • 死信监控:订阅 DeadLetter 输出到 Serilog(报警)。📣

13)可观测性与日志 📊

  • Akka.Logger.Serilog 与 ABP 的 Serilog 统一;
  • 日志添加 SourceContext=ActorPath 维度,便于过滤;
  • 定期拉取 GetClusterShardingStatsGetShardRegionState 观测分布/热点;
  • 流水线指标:入口队列深度、批量大小、吞吐/延迟、失败率(Prometheus/OpenTelemetry)。

14)部署:本地多实例 & K8s 🧪

本地/Compose

  • 多进程/容器静态 seed-nodes
  • 验证分片重分布、Failover、恢复时间(含快照前后对比)。

Kubernetes

  • Akka.Management + Akka.Discovery.KubernetesApiCluster Bootstrap
  • roles=["api"] / ["worker"] 分层,worker 走 HPA;
  • 健康探针 + Coordinated Shutdown,滚动升级/金丝雀发布。🌈

15)性能调优清单 ⚡

  1. 分片数:初始 = 总核数 × 2~4,压测校正(过小→热点,过大→开销增)。
  2. 消息体:短小定长;大对象走外部存储,仅传引用。
  3. 快照频率:以“重放时长目标(如 <2s)”反推,起步 500~2000 事件/快照。
  4. Ask 慎用:统一超时/重试策略;写多路径优先 Tell
  5. 邮箱一律有界;热点实体可专用 dispatcher/邮箱。
  6. 背压闭环:优先 ActorRefWithAck;配合节流/并行度/批量。

16)常见坑 & 规避 🧨

  • string.GetHashCode() 做分片哈希 → ✅ 用 HashCodeMessageExtractor(稳定)。
  • ❌ Streams 直接 Tell 到 Region → ✅ 用 ActorRefWithAck/批量 Ask 打通背压闭环
  • System.Object 绑定 Hyperion → ✅ 只绑定消息基类型,并考虑白名单/演进。
  • ❌ Remember-Entities 开启仍指望自动钝化 → ✅ 自动钝化被禁用;需要停用时用 Passivate
  • ❌ 无界邮箱 → ✅ 一律有界并观测队列深度。
  • ❌ 乱配 ABP×.NET → ✅ .NET 8 对应 ABP 8+。


网站公告

今日签到

点亮在社区的每一天
去签到