【C++】22. 封装哈希表实现unordered_set和unordered_map

发布于:2025-09-15 ⋅ 阅读:(24) ⋅ 点赞:(0)

一、源码及框架分析

SGI-STL30版本源代码中没有unordered_map和unordered_set,SGI-STL30版本是C++11之前的STL版本,这两个容器是C++11之后才更新的。但是SGI-STL30实现了哈希表,容器的名字是hash_map和hash_set,他是作为⾮标准的容器出现的,⾮标准是指⾮C++标准规定必须实现的,源代码在hash_map/hash_set/stl_hash_map/stl_hash_set/stl_hashtable.h中。

hash_map和hash_set的实现结构框架核⼼部分截取出来如下:

//hash_set.h
#include <stl_hashtable.h>
#include <stl_hash_set.h>


//hash_map.h
#include <stl_hashtable.h>
#include <stl_hash_map.h>


//stl_hash_set.h
template <class Value>
struct __hashtable_node
{
  __hashtable_node* next;
  Value val;
};  

template <class Value, class HashFcn = hash<Value>,
    class EqualKey = equal_to<Value>,
    class Alloc = alloc>

class hash_set
{
private:
    typedef hashtable<Value, Value, HashFcn, identity<Value>,
        EqualKey, Alloc> ht;
    ht rep;
public:
    typedef typename ht::key_type key_type;
    typedef typename ht::value_type value_type;
    typedef typename ht::hasher hasher;
    typedef typename ht::key_equal key_equal;

    typedef typename ht::const_iterator iterator;
    typedef typename ht::const_iterator const_iterator;
};
  

//stl_hash_map.h
template <class Key, class T, class HashFcn = hash<Key>,
    class EqualKey = equal_to<Key>,
    class Alloc = alloc>

class hash_map
{
private:
    typedef hashtable<pair<const Key, T>, Key, HashFcn,
        select1st<pair<const Key, T> >, EqualKey, Alloc> ht;
    ht rep;

public:
    typedef typename ht::key_type key_type;
    typedef T data_type;
    typedef T mapped_type;
    typedef typename ht::value_type value_type;
    typedef typename ht::hasher hasher;
    typedef typename ht::key_equal key_equal;

    typedef typename ht::iterator iterator;
    typedef typename ht::const_iterator const_iterator;
};


// stl_hashtable.h
template <class Value, class Key, class HashFcn,
    class ExtractKey, class EqualKey,
    class Alloc>
    
class hashtable {
public:
    typedef Key key_type;
    typedef Value value_type;
    typedef HashFcn hasher;
    typedef EqualKey key_equal;

    hasher hash_funct() const { return hash; }
    key_equal key_eq() const { return equals; }

private:
    hasher hash;
    key_equal equals;
    ExtractKey get_key;

    typedef __hashtable_node<Value> node;

    vector<node*, Alloc> buckets;
    size_type num_elements;

public:
    typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
        Alloc> iterator;

    pair<iterator, bool> insert_unique(const value_type& obj)
    
    const_iterator find(const key_type& key) const
};

在这里插入图片描述

  • 通过画图分析可以看到,结构上hash_map和hash_set跟map和set的完全类似,复⽤同⼀个hashtable实现key和key/value结构,hash_set传给hash_table的是key,hash_map传给hash_table的是pair<constkey,value>。

二、模拟实现unordered_map和unordered_set

1、实现出复⽤哈希表的框架,并⽀持insert

  • 参考源码框架,unordered_map和unordered_set复⽤之前我们实现的哈希表。

  • 我们这⾥相⽐源码调整⼀下,key参数就⽤K,value参数就⽤V,哈希表中的数据类型,我们使⽤T。

  • 其次跟map和set相⽐⽽⾔unordered_map和unordered_set的模拟实现类结构更复杂⼀点,但是⼤框架和思路是完全类似的。因为HashTable实现了泛型不知道T参数导致是K,还是pair<K,V>,那么insert内部进⾏插⼊时要⽤K对象转换成整形取模和K⽐较相等,因为pair的value不参与计算取模,且默认⽀持的是key和value⼀起⽐较相等,我们需要的任何时候只需要⽐较K对象,所以我们在unordered_map和unordered_set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给HashTable的KeyOfT,然后HashTable中通过KeyOfT仿函数取出T类型对象中的K对象,再转换成整形取模和K⽐较相等,具体细节参考如下代码实现。

//UnorderedSet.h
namespace zsy
{
	template<class K, class Hash = HashFunc<K>>
	class unordered_set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

	public:
		bool insert(const K& key)
		{
			return _ht.Insert(key);
		}

	private:
		hash_bucket::HashTable<K, K, SetKeyOfT, Hash> _ht;
	};
}


//UnorderedMap.h
namespace zsy
{
	template<class K, class V, class Hash = HashFunc<K>>
	class unordered_map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};

	public:
		bool insert(const pair<K, V>& kv)
		{
			return _ht.Insert(kv);
		}

	private:
		hash_bucket::HashTable<K, pair<K, V>, MapKeyOfT, Hash> _ht;
	};
}


// HashTable.h

//仿函数: 转换为无符号整型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

//特化: 将string类转换为无符号整型
template<>
struct HashFunc<string>
{
	size_t operator()(const string& s)
	{
		//BKDR哈希算法
		size_t hash = 0;
		for (auto ch : s)
		{
			hash += ch;
			hash *= 131;
		}

		return hash;
	}
};

//素数表函数:用于哈希表初始化和扩容(取大于n的最小素数)
inline unsigned long _stl_next_prime(unsigned long n)
{
	static const int _stl_num_primes = 28;
	static const unsigned long _stl_prime_list[_stl_num_primes] = {
		53, 97, 193, 389, 769,
		1543, 3079, 6151, 12289, 24593,
		49157, 98317, 196613, 393241, 786433,
		1572869, 3145739, 6291469, 12582917, 25165843,
		50331653, 100663319, 201326611, 402653189, 805306457,
		1610612741, 3221225473, 4294967291
	};
	const unsigned long* first = _stl_prime_list;
	const unsigned long* last = _stl_prime_list + _stl_num_primes;
	const unsigned long* pos = lower_bound(first, last, n);//[first,second) >=n
	return pos == last ? *(last - 1) : *pos;
}

namespace hash_bucket
{
	template<class T>
	struct HashNode
	{
		T _data;
		HashNode<T>* _next;

		HashNode(const T& data)
			:_data(data)
			, _next(nullptr)
		{}
	};

	// 实现步骤: 
	// 1、实现哈希表 
	// 2、封装unordered_map和unordered_set的框架 解决KeyOfT 
	// 3、iterator 
	// 4、const_iterator 
	// 5、key不⽀持修改的问题 
	// 6、operator[] 

	template<class K, class T, class KeyOfT, class Hash>
	class HashTable
	{
		typedef HashNode<T> Node;

	public:
		HashTable()
			:_tables(_stl_next_prime(0), nullptr)
			, _n(0)
		{}

		HashTable(const HashTable& ht)
		{
			_tables.resize(ht._tables.size(), nullptr);//初始化N个空节点
			_n = ht._n;

			//遍历源哈希表的每个桶,进行深拷贝
			for (size_t i = 0; i < ht._tables.size(); ++i)
			{
				Node* cur = ht._tables[i];
				Node* newHead = nullptr;
				Node* tail = nullptr;

				//拷贝链表中的每个节点
				while (cur)
				{
					Node* newnode = new Node(cur->_data); //深拷贝节点

					//尾插
					if (newHead == nullptr)
					{
						newHead = newnode;
						tail = newnode;
					}
					else
					{
						tail->_next = newnode;
						tail = tail->_next;
					}

					cur = cur->_next;
				}

				_tables[i] = newHead;//将新链表头指针存入当前哈希表
			}
		}

		void Swap(HashTable& ht)
		{
			_tables.swap(ht._tables);
			swap(_n, ht._n);
		}

		HashTable& operator=(HashTable ht)
		{
			Swap(ht);

			return *this;
		}

		~HashTable()
		{
			//释放每个桶
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;

					cur = next;
				}

				_tables[i] = nullptr;
			}
		}

		bool Insert(const T& data)
		{
			//避免重复值插入	
			KeyOfT kot;
			Iterator it = Find(kot(data));
			if (it != End())
				return false;

			Hash hs;

			//负载因子=1时扩容
			if (_n == _tables.size())
			{
				vector<Node*> newTable(_stl_next_prime(_tables.size() + 1), nullptr);
				for (size_t i = 0; i < _tables.size(); ++i)
				{
					Node* cur = _tables[i];
					while (cur)
					{
						Node* next = cur->_next;
						//原数据头插到新表
						size_t hashi = hash(kot(cur->_data)) % newTable.size();
						cur->_next = newTable[hashi];
						newTable[hashi] = cur;

						cur = next;
					}

					_tables[i] = nullptr;//对应旧表清空
				}

				_tables.swap(newTable);
			}

			size_t hashi = hash(kot(data)) % _tables.size();
			//头插
			Node* newnode = new Node(data);
			newnode->_next = _tables[hashi];//新节点指向原链表头
			_tables[hashi] = newnode;//newnode成为新链表头
			++_n;

			return true;
		}

	private:
		vector<Node*> _tables;//指针数组
		size_t _n = 0;
	};
}

2、⽀持iterator的实现

iterator核⼼源代码

template <class Value, class Key, class HashFcn,
	class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator {
	typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> hashtable;
	typedef __hashtable_iterator<Value, Key, HashFcn,ExtractKey, EqualKey, Alloc> iterator;
	typedef __hashtable_const_iterator<Value, Key, HashFcn,ExtractKey, EqualKey, Alloc> const_iterator;
	typedef __hashtable_node<Value> node;
	typedef forward_iterator_tag iterator_category;
	typedef Value value_type;

	node* cur;
	hashtable* ht;

	__hashtable_iterator(node* n, hashtable* tab) : cur(n), ht(tab) {}
	__hashtable_iterator() {}
	reference operator*() const { return cur->val; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
	pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
    iterator & operator++();
	iterator operator++(int);
	bool operator==(const iterator& it) const { return cur == it.cur; }
	bool operator!=(const iterator& it) const { return cur != it.cur; }
};

template <class V, class K, class HF, class ExK, class EqK, class A>
__hashtable_iterator<V, K, HF, ExK, EqK, A>&
__hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++()
{
	const node* old = cur;
	cur = cur->next;
	if (!cur) {
		size_type bucket = ht->bkt_num(old->val);
		while (!cur && ++bucket < ht->buckets.size())
			cur = ht->buckets[bucket];
	}
	return *this;
}

iterator实现思路分析:

  • iterator实现的⼤框架跟list的iterator思路是⼀致的,⽤⼀个类型封装结点的指针,再通过重载运算符实现,迭代器像指针⼀样访问的⾏为,要注意的是哈希表的迭代器是单向迭代器。

  • 这⾥的难点是operator++的实现。iterator中有⼀个指向结点的指针,如果当前桶下⾯还有结点,则结点的指针指向下⼀个结点即可。如果当前桶⾛完了,则需要想办法计算找到下⼀个桶。这⾥的难点反⽽是结构设计的问题,参考上⾯的源码,我们可以看到iterator中除了有结点的指针,还有哈希表对象的指针,这样当前桶⾛完了,要计算下⼀个桶就相对容易多了,⽤key值计算出当前桶位置,依次往后找下⼀个不为空的桶即可。

  • begin()返回第⼀个桶中第⼀个节点指针构造的迭代器,这⾥end()返回迭代器可以⽤空表⽰。

  • unordered_set的iterator也不⽀持修改,我们把unordered_set的第⼆个模板参数改成const K即可, HashTable<K, const K, SetKeyOfT, Hash> _ht;

  • unordered_map的iterator不⽀持修改key但是可以修改value,我们把unordered_map的第⼆个模板参数pair的第⼀个参数改成const K即可, HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;

  • ⽀持完整的迭代器还有很多细节需要修改,具体参考下⾯代码。

//前置声明
template<class K, class T, class KeyOfT, class Hash>
class HashTable;

template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
struct HTIterator
{
	typedef HashNode<T> Node;
	typedef HashTable<K, T, KeyOfT, Hash> HT;
	typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;

	Node* _node;
	const HT* _ht;

	HTIterator(Node* node, const HT* ht)
		:_node(node)
		, _ht(ht)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator==(const Self& s)
	{
		return _node == s._node;
	}

	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}

	Self& operator++()
	{
		//当前桶还有数据,走下一个节点
		if (_node->_next)
		{
			_node = _node->_next;
		}
		//当前桶走完了,找下一个不为空的桶
		else
		{
			KeyOfT kot;
			Hash hash;
			size_t hashi = hash(kot(_node->_data)) % _ht->_tables.size();
			++hashi;
			while (hashi < _ht->_tables.size())
			{
				_node = _ht->_tables[hashi];

				if (_node)
					break;
				else
					++hashi;
			}

			//走完所有桶,end()给的空_node
			if (hashi == _ht->_tables.size())
			{
				_node = nullptr;
			}
		}

		return *this;
	}
};

template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
	//友元声明  允许访问struct HTIterator
	template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
	friend struct HTIterator;

	typedef HashNode<T> Node;
public:
	typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;
	typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;

	Iterator Begin()
	{
		//哈希表为空
		if (_n == 0)
			return End();

		//找第一个不为空的桶
		for (size_t i = 0; i < _tables.size(); ++i)
		{
			Node* cur = _tables[i];
			if (cur)
			{
				return Iterator(cur, this);
			}
		}

		//走完所有桶
		return End();
	}

	Iterator End()
	{
		return Iterator(nullptr, this);
	}

	ConstIterator Begin() const
	{
		if (_n == 0)
			return End();

		for (size_t i = 0; i < _tables.size(); ++i)
		{
			Node* cur = _tables[i];
			if (cur)
			{
				return ConstIterator(cur, this);
			}
		}

		return End();
	}

	ConstIterator End() const
	{
		return ConstIterator(nullptr, this);
	}
}

3、map⽀持[ ]

  • unordered_map要⽀持[]主要需要修改insert返回值⽀持,修改HashTable中的insert返回值为pair<Iterator, bool> Insert(const T& data)

  • 有了insert⽀持[ ]实现就很简单了,具体参考下⾯代码实现。

//UnorderedMap.h

template<class K, class V, class Hash = HashFunc<K>>

V& operator[](const K& key)
{
	pair<iterator, bool> ret = insert({ key,V() });
	return ret.first->second;
}

4、封装实现的完整代码

1)HashTable.h

#pragma once

#include<vector>

//仿函数: 转换为无符号整型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

//特化: 将string类转换为无符号整型
template<>	
struct HashFunc<string>
{
	size_t operator()(const string& s)
	{
		//BKDR哈希算法
		size_t hash = 0;
		for (auto ch : s)
		{
			hash += ch;
			hash *= 131;
		}

		return hash;
	}
}	;

//素数表函数:用于哈希表初始化和扩容(取大于n的最小素数)
inline unsigned long _stl_next_prime(unsigned long n)
{
	static const int _stl_num_primes = 28;
	static const unsigned long _stl_prime_list[_stl_num_primes] = {
		53, 97, 193, 389, 769,
		1543, 3079, 6151, 12289, 24593,
		49157, 98317, 196613, 393241, 786433,
		1572869, 3145739, 6291469, 12582917, 25165843,
		50331653, 100663319, 201326611, 402653189, 805306457,
		1610612741, 3221225473, 4294967291
	};
	const unsigned long* first = _stl_prime_list;
	const unsigned long* last = _stl_prime_list + _stl_num_primes;
	const unsigned long* pos = lower_bound(first, last, n);//[first,second) >=n
	return pos == last ? *(last - 1) : *pos;
}


//哈希桶
namespace hash_bucket
{
	template<class T>
	struct HashNode
	{
		T _data;
		HashNode<T>* _next;

		HashNode(const T& data)
			:_data(data)
			,_next(nullptr)
		{}
	};

	//前置声明
	template<class K, class T, class KeyOfT, class Hash>
	class HashTable;

	template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
	struct HTIterator
	{
		typedef HashNode<T> Node;
		typedef HashTable<K, T, KeyOfT, Hash> HT;
		typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;

		Node* _node;
		const HT* _ht;

		HTIterator(Node* node, const HT* ht)
			:_node(node)
			, _ht(ht)
		{}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator==(const Self& s)
		{
			return _node == s._node;
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

		Self& operator++()
		{
			//当前桶还有数据,走下一个节点
			if (_node->_next)
			{
				_node = _node->_next;
			}
			//当前桶走完了,找下一个不为空的桶
			else
			{
				KeyOfT kot;
				Hash hash;
				size_t hashi = hash(kot(_node->_data)) % _ht->_tables.size();
				++hashi;
				while (hashi < _ht->_tables.size())
				{
					_node = _ht->_tables[hashi];

					if (_node)
						break;
					else
						++hashi;
				}

				//走完所有桶,end()给的空_node
				if (hashi == _ht->_tables.size())
				{
					_node = nullptr;
				}
			}

			return *this;
		}
	};

	template<class K, class T, class KeyOfT, class Hash>
	class HashTable
	{
		//友元声明  允许访问struct HTIterator
		template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
		friend struct HTIterator;

		typedef HashNode<T> Node;
	public:
		typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;
		typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;

		Iterator Begin()
		{
			//哈希表为空
			if (_n == 0)
				return End();

			//找第一个不为空的桶
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				Node* cur = _tables[i];
				if (cur)
				{
					return Iterator(cur, this);
				}
			}

			//走完所有桶
			return End();
		}

		Iterator End()
		{
			return Iterator(nullptr, this);
		}

		ConstIterator Begin() const
		{
			if (_n == 0)
				return End();

			for (size_t i = 0; i < _tables.size(); ++i)
			{
				Node* cur = _tables[i];
				if (cur)
				{
					return ConstIterator(cur, this);
				}
			}

			return End();
		}

		ConstIterator End() const
		{
			return ConstIterator(nullptr, this);
		}


		HashTable()
			:_tables(_stl_next_prime(0), nullptr)
			, _n(0)
		{}

		HashTable(const HashTable& ht)
		{
			_tables.resize(ht._tables.size(), nullptr);//初始化N个空节点
			_n = ht._n;

			//遍历源哈希表的每个桶,进行深拷贝
			for (size_t i = 0; i < ht._tables.size(); ++i)
			{
				Node* cur = ht._tables[i];
				Node* newHead = nullptr;
				Node* tail = nullptr;

				//拷贝链表中的每个节点
				while (cur)
				{
					Node* newnode = new Node(cur->_data); //深拷贝节点

					//尾插
					if (newHead == nullptr)
					{
						newHead = newnode;
						tail = newnode;
					}
					else
					{
						tail->_next = newnode;
						tail = tail->_next;
					}

					cur = cur->_next;
				}

				_tables[i] = newHead;//将新链表头指针存入当前哈希表
			}
		}

		void Swap(HashTable& ht)
		{
			_tables.swap(ht._tables);
			swap(_n, ht._n);
		}
		
		HashTable& operator=(HashTable ht)
		{
			Swap(ht);

			return *this;
		}

		~HashTable()
		{
			//释放每个桶
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;

					cur = next;
				}

				_tables[i] = nullptr;
			}
		}

		pair<Iterator,bool> Insert(const T& data)
		{
			//避免重复值插入	
			KeyOfT kot;
			Iterator it = Find(kot(data));
			if (it != End())
				return { it,false };

			Hash hash;

			//负载因子=1时扩容
			if (_n == _tables.size())
			{
				vector<Node*> newTable(_stl_next_prime(_tables.size() + 1),nullptr);
				for (size_t i = 0; i < _tables.size(); ++i)
				{
					Node* cur = _tables[i];
					while (cur)
					{
						Node* next = cur->_next;
						//原数据头插到新表
						size_t hashi = hash(kot(cur->_data)) % newTable.size();
						cur->_next = newTable[hashi];
						newTable[hashi] = cur;

						cur = next;
					}

					_tables[i] = nullptr;//对应旧表清空
				}

				_tables.swap(newTable);
			}

			size_t hashi = hash(kot(data)) % _tables.size();
			//头插
			Node* newnode = new Node(data);
			newnode->_next = _tables[hashi];//新节点指向原链表头
			_tables[hashi] = newnode;//newnode成为新链表头
			++_n;

			return { Iterator(newnode,this),true };
		}


		Iterator Find(const K& key) 
		{
			KeyOfT kot;
			Hash hash;
			size_t hashi = hash(key) % _tables.size();
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					return Iterator(cur, this);
				}

				cur = cur->_next;
			}

			return End();
		}

		bool Erase(const K& key)
		{
			KeyOfT kot;
			Hash hash;
			size_t hashi = hash(key) % _tables.size();

			Node* prev = nullptr;
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					//头节点
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					//中间节点
					else
					{
						prev->_next = cur->_next;
					}

					delete cur;
					--_n;

					return true;
				}
				else
				{
					prev = cur;
					cur = cur->_next;
				}
			}

			//节点不存在
			return false;
		}

	private:
		vector<Node*> _tables;//指针数组
		size_t _n = 0;
	};
}

2)UnorderedSet.h

#pragma once

#include"HashTable.h"

//UnorderedSet.h
namespace zsy
{
	template<class K, class Hash = HashFunc<K>>
	class unordered_set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

	public:
		typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;
		typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;

		iterator begin()
		{
			return _ht.Begin();
		}

		iterator end()
		{
			return _ht.End();
		}

		const_iterator begin() const
		{
			return _ht.Begin();
		}

		const_iterator end() const
		{
			return _ht.End();
		}

		pair<iterator, bool> insert(const K& key)
		{
			return _ht.Insert(key);
		}

		iterator find(const K& key)
		{
			return _ht.Find(key);
		}

		bool erase(const K& key)
		{
			return _ht.Erase(key);
		}

	private:
		hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
	};
}

3)UnorderedMap.h

#pragma once

#include"HashTable.h"

//MyUnorderedMap.h
namespace zsy
{
	template<class K, class V, class Hash = HashFunc<K>>
	class unordered_map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};

	public:
		typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;
		typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;

		iterator begin()
		{
			return _ht.Begin();
		}

		iterator end()
		{
			return _ht.End();
		}

		const_iterator begin() const
		{
			return _ht.Begin();
		}

		const_iterator end() const
		{
			return _ht.End();
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert({ key,V() });
			return ret.first->second;
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _ht.Insert(kv);
		}

		iterator find(const K& key)
		{
			return _ht.Find(key);
		}

		bool erase(const K& key)
		{
			return _ht.Erase(key);
		}

	private:
		hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
	};
}

4)Test.cpp

接着对我们封装后的UnorderedSet和UnorderedMap进行测试:

#include<iostream>
using namespace std;

#include"UnorderedMap.h"
#include"UnorderedSet.h"

namespace zsy
{
	void test_unordered_set()
	{
		int a[] = { 3,11,86,7,88,82,10,5,6,7,6 };
		unordered_set<int> s;
		for (auto e : a)
		{
			s.insert(e);
		}

		unordered_set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;

	}

	void test_unordered_map()
	{
		unordered_map<string, string> dict;
		dict.insert({ "left","左边" });
		dict.insert({ "right","右边" });
		dict.insert({ "insert","插入" });
		dict["sort"] = "排序";//[]实现插入
		dict["insert"] = "插入元素";//[]实现修改

		unordered_map<string, string>::iterator it = dict.begin();
		while (it != dict.end())
		{
			it->second += "x"; //it->first不允许修改,it->second允许修改
			cout << it->first << ":" << it->second << endl;
			++it;
		}	
	}
}

int main()
{
	zsy::test_unordered_set();
	zsy::test_unordered_map();
	return 0;
}

运行结果: