一、源码及框架分析
SGI-STL30版本源代码中没有unordered_map和unordered_set,SGI-STL30版本是C++11之前的STL版本,这两个容器是C++11之后才更新的。但是SGI-STL30实现了哈希表,容器的名字是hash_map和hash_set,他是作为⾮标准的容器出现的,⾮标准是指⾮C++标准规定必须实现的,源代码在hash_map/hash_set/stl_hash_map/stl_hash_set/stl_hashtable.h中。
hash_map和hash_set的实现结构框架核⼼部分截取出来如下:
//hash_set.h
#include <stl_hashtable.h>
#include <stl_hash_set.h>
//hash_map.h
#include <stl_hashtable.h>
#include <stl_hash_map.h>
//stl_hash_set.h
template <class Value>
struct __hashtable_node
{
__hashtable_node* next;
Value val;
};
template <class Value, class HashFcn = hash<Value>,
class EqualKey = equal_to<Value>,
class Alloc = alloc>
class hash_set
{
private:
typedef hashtable<Value, Value, HashFcn, identity<Value>,
EqualKey, Alloc> ht;
ht rep;
public:
typedef typename ht::key_type key_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename ht::const_iterator iterator;
typedef typename ht::const_iterator const_iterator;
};
//stl_hash_map.h
template <class Key, class T, class HashFcn = hash<Key>,
class EqualKey = equal_to<Key>,
class Alloc = alloc>
class hash_map
{
private:
typedef hashtable<pair<const Key, T>, Key, HashFcn,
select1st<pair<const Key, T> >, EqualKey, Alloc> ht;
ht rep;
public:
typedef typename ht::key_type key_type;
typedef T data_type;
typedef T mapped_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename ht::iterator iterator;
typedef typename ht::const_iterator const_iterator;
};
// stl_hashtable.h
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey,
class Alloc>
class hashtable {
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
hasher hash_funct() const { return hash; }
key_equal key_eq() const { return equals; }
private:
hasher hash;
key_equal equals;
ExtractKey get_key;
typedef __hashtable_node<Value> node;
vector<node*, Alloc> buckets;
size_type num_elements;
public:
typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
Alloc> iterator;
pair<iterator, bool> insert_unique(const value_type& obj)
const_iterator find(const key_type& key) const
};
- 通过画图分析可以看到,结构上hash_map和hash_set跟map和set的完全类似,复⽤同⼀个hashtable实现key和key/value结构,hash_set传给hash_table的是key,hash_map传给hash_table的是pair<constkey,value>。
二、模拟实现unordered_map和unordered_set
1、实现出复⽤哈希表的框架,并⽀持insert
参考源码框架,unordered_map和unordered_set复⽤之前我们实现的哈希表。
我们这⾥相⽐源码调整⼀下,key参数就⽤K,value参数就⽤V,哈希表中的数据类型,我们使⽤T。
其次跟map和set相⽐⽽⾔unordered_map和unordered_set的模拟实现类结构更复杂⼀点,但是⼤框架和思路是完全类似的。因为HashTable实现了泛型不知道T参数导致是K,还是pair<K,V>,那么insert内部进⾏插⼊时要⽤K对象转换成整形取模和K⽐较相等,因为pair的value不参与计算取模,且默认⽀持的是key和value⼀起⽐较相等,我们需要的任何时候只需要⽐较K对象,所以我们在unordered_map和unordered_set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给HashTable的KeyOfT,然后HashTable中通过KeyOfT仿函数取出T类型对象中的K对象,再转换成整形取模和K⽐较相等,具体细节参考如下代码实现。
//UnorderedSet.h
namespace zsy
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
bool insert(const K& key)
{
return _ht.Insert(key);
}
private:
hash_bucket::HashTable<K, K, SetKeyOfT, Hash> _ht;
};
}
//UnorderedMap.h
namespace zsy
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
bool insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
private:
hash_bucket::HashTable<K, pair<K, V>, MapKeyOfT, Hash> _ht;
};
}
// HashTable.h
//仿函数: 转换为无符号整型
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
//特化: 将string类转换为无符号整型
template<>
struct HashFunc<string>
{
size_t operator()(const string& s)
{
//BKDR哈希算法
size_t hash = 0;
for (auto ch : s)
{
hash += ch;
hash *= 131;
}
return hash;
}
};
//素数表函数:用于哈希表初始化和扩容(取大于n的最小素数)
inline unsigned long _stl_next_prime(unsigned long n)
{
static const int _stl_num_primes = 28;
static const unsigned long _stl_prime_list[_stl_num_primes] = {
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = _stl_prime_list;
const unsigned long* last = _stl_prime_list + _stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);//[first,second) >=n
return pos == last ? *(last - 1) : *pos;
}
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
, _next(nullptr)
{}
};
// 实现步骤:
// 1、实现哈希表
// 2、封装unordered_map和unordered_set的框架 解决KeyOfT
// 3、iterator
// 4、const_iterator
// 5、key不⽀持修改的问题
// 6、operator[]
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
typedef HashNode<T> Node;
public:
HashTable()
:_tables(_stl_next_prime(0), nullptr)
, _n(0)
{}
HashTable(const HashTable& ht)
{
_tables.resize(ht._tables.size(), nullptr);//初始化N个空节点
_n = ht._n;
//遍历源哈希表的每个桶,进行深拷贝
for (size_t i = 0; i < ht._tables.size(); ++i)
{
Node* cur = ht._tables[i];
Node* newHead = nullptr;
Node* tail = nullptr;
//拷贝链表中的每个节点
while (cur)
{
Node* newnode = new Node(cur->_data); //深拷贝节点
//尾插
if (newHead == nullptr)
{
newHead = newnode;
tail = newnode;
}
else
{
tail->_next = newnode;
tail = tail->_next;
}
cur = cur->_next;
}
_tables[i] = newHead;//将新链表头指针存入当前哈希表
}
}
void Swap(HashTable& ht)
{
_tables.swap(ht._tables);
swap(_n, ht._n);
}
HashTable& operator=(HashTable ht)
{
Swap(ht);
return *this;
}
~HashTable()
{
//释放每个桶
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
bool Insert(const T& data)
{
//避免重复值插入
KeyOfT kot;
Iterator it = Find(kot(data));
if (it != End())
return false;
Hash hs;
//负载因子=1时扩容
if (_n == _tables.size())
{
vector<Node*> newTable(_stl_next_prime(_tables.size() + 1), nullptr);
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
//原数据头插到新表
size_t hashi = hash(kot(cur->_data)) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;//对应旧表清空
}
_tables.swap(newTable);
}
size_t hashi = hash(kot(data)) % _tables.size();
//头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];//新节点指向原链表头
_tables[hashi] = newnode;//newnode成为新链表头
++_n;
return true;
}
private:
vector<Node*> _tables;//指针数组
size_t _n = 0;
};
}
2、⽀持iterator的实现
iterator核⼼源代码
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator {
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> hashtable;
typedef __hashtable_iterator<Value, Key, HashFcn,ExtractKey, EqualKey, Alloc> iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn,ExtractKey, EqualKey, Alloc> const_iterator;
typedef __hashtable_node<Value> node;
typedef forward_iterator_tag iterator_category;
typedef Value value_type;
node* cur;
hashtable* ht;
__hashtable_iterator(node* n, hashtable* tab) : cur(n), ht(tab) {}
__hashtable_iterator() {}
reference operator*() const { return cur->val; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
iterator & operator++();
iterator operator++(int);
bool operator==(const iterator& it) const { return cur == it.cur; }
bool operator!=(const iterator& it) const { return cur != it.cur; }
};
template <class V, class K, class HF, class ExK, class EqK, class A>
__hashtable_iterator<V, K, HF, ExK, EqK, A>&
__hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++()
{
const node* old = cur;
cur = cur->next;
if (!cur) {
size_type bucket = ht->bkt_num(old->val);
while (!cur && ++bucket < ht->buckets.size())
cur = ht->buckets[bucket];
}
return *this;
}
iterator实现思路分析:
iterator实现的⼤框架跟list的iterator思路是⼀致的,⽤⼀个类型封装结点的指针,再通过重载运算符实现,迭代器像指针⼀样访问的⾏为,要注意的是哈希表的迭代器是单向迭代器。
这⾥的难点是operator++的实现。iterator中有⼀个指向结点的指针,如果当前桶下⾯还有结点,则结点的指针指向下⼀个结点即可。如果当前桶⾛完了,则需要想办法计算找到下⼀个桶。这⾥的难点反⽽是结构设计的问题,参考上⾯的源码,我们可以看到iterator中除了有结点的指针,还有哈希表对象的指针,这样当前桶⾛完了,要计算下⼀个桶就相对容易多了,⽤key值计算出当前桶位置,依次往后找下⼀个不为空的桶即可。
begin()返回第⼀个桶中第⼀个节点指针构造的迭代器,这⾥end()返回迭代器可以⽤空表⽰。
unordered_set的iterator也不⽀持修改,我们把unordered_set的第⼆个模板参数改成const K即可,
HashTable<K, const K, SetKeyOfT, Hash> _ht;
unordered_map的iterator不⽀持修改key但是可以修改value,我们把unordered_map的第⼆个模板参数pair的第⼀个参数改成const K即可,
HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
⽀持完整的迭代器还有很多细节需要修改,具体参考下⾯代码。
//前置声明
template<class K, class T, class KeyOfT, class Hash>
class HashTable;
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
struct HTIterator
{
typedef HashNode<T> Node;
typedef HashTable<K, T, KeyOfT, Hash> HT;
typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;
Node* _node;
const HT* _ht;
HTIterator(Node* node, const HT* ht)
:_node(node)
, _ht(ht)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator==(const Self& s)
{
return _node == s._node;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
Self& operator++()
{
//当前桶还有数据,走下一个节点
if (_node->_next)
{
_node = _node->_next;
}
//当前桶走完了,找下一个不为空的桶
else
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(kot(_node->_data)) % _ht->_tables.size();
++hashi;
while (hashi < _ht->_tables.size())
{
_node = _ht->_tables[hashi];
if (_node)
break;
else
++hashi;
}
//走完所有桶,end()给的空_node
if (hashi == _ht->_tables.size())
{
_node = nullptr;
}
}
return *this;
}
};
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
//友元声明 允许访问struct HTIterator
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
friend struct HTIterator;
typedef HashNode<T> Node;
public:
typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;
typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;
Iterator Begin()
{
//哈希表为空
if (_n == 0)
return End();
//找第一个不为空的桶
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
if (cur)
{
return Iterator(cur, this);
}
}
//走完所有桶
return End();
}
Iterator End()
{
return Iterator(nullptr, this);
}
ConstIterator Begin() const
{
if (_n == 0)
return End();
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
if (cur)
{
return ConstIterator(cur, this);
}
}
return End();
}
ConstIterator End() const
{
return ConstIterator(nullptr, this);
}
}
3、map⽀持[ ]
unordered_map要⽀持[]主要需要修改insert返回值⽀持,修改HashTable中的insert返回值为
pair<Iterator, bool> Insert(const T& data)
。有了insert⽀持[ ]实现就很简单了,具体参考下⾯代码实现。
//UnorderedMap.h
template<class K, class V, class Hash = HashFunc<K>>
V& operator[](const K& key)
{
pair<iterator, bool> ret = insert({ key,V() });
return ret.first->second;
}
4、封装实现的完整代码
1)HashTable.h
#pragma once
#include<vector>
//仿函数: 转换为无符号整型
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
//特化: 将string类转换为无符号整型
template<>
struct HashFunc<string>
{
size_t operator()(const string& s)
{
//BKDR哈希算法
size_t hash = 0;
for (auto ch : s)
{
hash += ch;
hash *= 131;
}
return hash;
}
} ;
//素数表函数:用于哈希表初始化和扩容(取大于n的最小素数)
inline unsigned long _stl_next_prime(unsigned long n)
{
static const int _stl_num_primes = 28;
static const unsigned long _stl_prime_list[_stl_num_primes] = {
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = _stl_prime_list;
const unsigned long* last = _stl_prime_list + _stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);//[first,second) >=n
return pos == last ? *(last - 1) : *pos;
}
//哈希桶
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
,_next(nullptr)
{}
};
//前置声明
template<class K, class T, class KeyOfT, class Hash>
class HashTable;
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
struct HTIterator
{
typedef HashNode<T> Node;
typedef HashTable<K, T, KeyOfT, Hash> HT;
typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;
Node* _node;
const HT* _ht;
HTIterator(Node* node, const HT* ht)
:_node(node)
, _ht(ht)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator==(const Self& s)
{
return _node == s._node;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
Self& operator++()
{
//当前桶还有数据,走下一个节点
if (_node->_next)
{
_node = _node->_next;
}
//当前桶走完了,找下一个不为空的桶
else
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(kot(_node->_data)) % _ht->_tables.size();
++hashi;
while (hashi < _ht->_tables.size())
{
_node = _ht->_tables[hashi];
if (_node)
break;
else
++hashi;
}
//走完所有桶,end()给的空_node
if (hashi == _ht->_tables.size())
{
_node = nullptr;
}
}
return *this;
}
};
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
//友元声明 允许访问struct HTIterator
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
friend struct HTIterator;
typedef HashNode<T> Node;
public:
typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;
typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;
Iterator Begin()
{
//哈希表为空
if (_n == 0)
return End();
//找第一个不为空的桶
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
if (cur)
{
return Iterator(cur, this);
}
}
//走完所有桶
return End();
}
Iterator End()
{
return Iterator(nullptr, this);
}
ConstIterator Begin() const
{
if (_n == 0)
return End();
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
if (cur)
{
return ConstIterator(cur, this);
}
}
return End();
}
ConstIterator End() const
{
return ConstIterator(nullptr, this);
}
HashTable()
:_tables(_stl_next_prime(0), nullptr)
, _n(0)
{}
HashTable(const HashTable& ht)
{
_tables.resize(ht._tables.size(), nullptr);//初始化N个空节点
_n = ht._n;
//遍历源哈希表的每个桶,进行深拷贝
for (size_t i = 0; i < ht._tables.size(); ++i)
{
Node* cur = ht._tables[i];
Node* newHead = nullptr;
Node* tail = nullptr;
//拷贝链表中的每个节点
while (cur)
{
Node* newnode = new Node(cur->_data); //深拷贝节点
//尾插
if (newHead == nullptr)
{
newHead = newnode;
tail = newnode;
}
else
{
tail->_next = newnode;
tail = tail->_next;
}
cur = cur->_next;
}
_tables[i] = newHead;//将新链表头指针存入当前哈希表
}
}
void Swap(HashTable& ht)
{
_tables.swap(ht._tables);
swap(_n, ht._n);
}
HashTable& operator=(HashTable ht)
{
Swap(ht);
return *this;
}
~HashTable()
{
//释放每个桶
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
pair<Iterator,bool> Insert(const T& data)
{
//避免重复值插入
KeyOfT kot;
Iterator it = Find(kot(data));
if (it != End())
return { it,false };
Hash hash;
//负载因子=1时扩容
if (_n == _tables.size())
{
vector<Node*> newTable(_stl_next_prime(_tables.size() + 1),nullptr);
for (size_t i = 0; i < _tables.size(); ++i)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
//原数据头插到新表
size_t hashi = hash(kot(cur->_data)) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;//对应旧表清空
}
_tables.swap(newTable);
}
size_t hashi = hash(kot(data)) % _tables.size();
//头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];//新节点指向原链表头
_tables[hashi] = newnode;//newnode成为新链表头
++_n;
return { Iterator(newnode,this),true };
}
Iterator Find(const K& key)
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
return Iterator(cur, this);
}
cur = cur->_next;
}
return End();
}
bool Erase(const K& key)
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
//头节点
if (prev == nullptr)
{
_tables[hashi] = cur->_next;
}
//中间节点
else
{
prev->_next = cur->_next;
}
delete cur;
--_n;
return true;
}
else
{
prev = cur;
cur = cur->_next;
}
}
//节点不存在
return false;
}
private:
vector<Node*> _tables;//指针数组
size_t _n = 0;
};
}
2)UnorderedSet.h
#pragma once
#include"HashTable.h"
//UnorderedSet.h
namespace zsy
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
pair<iterator, bool> insert(const K& key)
{
return _ht.Insert(key);
}
iterator find(const K& key)
{
return _ht.Find(key);
}
bool erase(const K& key)
{
return _ht.Erase(key);
}
private:
hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
};
}
3)UnorderedMap.h
#pragma once
#include"HashTable.h"
//MyUnorderedMap.h
namespace zsy
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = insert({ key,V() });
return ret.first->second;
}
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
iterator find(const K& key)
{
return _ht.Find(key);
}
bool erase(const K& key)
{
return _ht.Erase(key);
}
private:
hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
};
}
4)Test.cpp
接着对我们封装后的UnorderedSet和UnorderedMap进行测试:
#include<iostream>
using namespace std;
#include"UnorderedMap.h"
#include"UnorderedSet.h"
namespace zsy
{
void test_unordered_set()
{
int a[] = { 3,11,86,7,88,82,10,5,6,7,6 };
unordered_set<int> s;
for (auto e : a)
{
s.insert(e);
}
unordered_set<int>::iterator it = s.begin();
while (it != s.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void test_unordered_map()
{
unordered_map<string, string> dict;
dict.insert({ "left","左边" });
dict.insert({ "right","右边" });
dict.insert({ "insert","插入" });
dict["sort"] = "排序";//[]实现插入
dict["insert"] = "插入元素";//[]实现修改
unordered_map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
it->second += "x"; //it->first不允许修改,it->second允许修改
cout << it->first << ":" << it->second << endl;
++it;
}
}
}
int main()
{
zsy::test_unordered_set();
zsy::test_unordered_map();
return 0;
}
运行结果: