基于Workbench的多变量多目标优化设计实例教程

发布于:2022-10-21 ⋅ 阅读:(485) ⋅ 点赞:(0)

作者:米条老师 仿真秀APP专栏作者

导读:本内容主要介绍利用Workbench进行多变量多目标优化设计的整个技术方法,提供基本的模型处理以及优化算法设置的整个过程介绍。

在现代机械设计理论中通常会介绍众多的优化设计算法,在了解基本的算法理念之后,通过软件实现优化设计是机械设计中常用的设计流程。Workbench提供了Design Exploration工具,可以进行优化设计以及响应面等类型问题的相关分析,下面通过一个非常简单的实例对优化设计过程进行讲解,基本的优化项目卡片如图1所示。

图1 优化设卡片

我们需要做的工作是:参数化设计模型-->初始设计仿真计算-->搭建优化模型-->获得优化结果,这也是优化的基本流程。

在这个例子中,我们希望通过对几何尺寸的变化搜索,保证变形和应力值低于某个数值之下,结构质量最轻,一个简单的轻量化问题。

首先是参数化设计,在workbench中可以通过下面的方法实现,建立草图然后对参与优化设计的变量进行参数化,选择设计变量前面的小方格,使其变为图2中所示带“D”样式,对所有参与优化设计的变量进行同样处理。

图2 参数化几何设计变量

然后我们进行基本的初始设计仿真计算,这里是一个简单的悬臂梁结构,计算设置如图3所示,输出结果如图4。

图3 边界及载荷

图4 计算结果云图

这里需要对质量以及计算结果进行参数化,与几何尺寸参数化一样,找到对应的变量然后单击前方的小方格,质量则在Model中的Geometry下设置,最终如图5所示。

图5 设置其它变量的参数化

这些设置完成之后可以看到在项目卡片中会产生parameter set项,其中就有我们所建立的各个变量,如图6所示,然后在左侧工具栏选择direct optimization创建优化项目。

图6 设计变量

接下来是进行具体的优化设计设置,开展优化设置的步骤如下:

(1)双击optimization进入优化设置步骤,在里面需要建立优化算法,选择优化模型,本例直接使用默认即可,设置samples为50,如图7所示。

图7 优化算法设置

当然,workbench中提供了另外几种优化算法,分别是MOGA(多目标遗传算法)、NLPQL(拉格朗尔非线性规划算法)、MISQP(混合整数二次规划算法)等,不同的算法具备各自的优劣势,在进行优化设计中基于计算效率和求解需要有针对性的选择即可。

(2)设置约束及目标,定义约束变量及优化目标,操作如图8所示。


基于Workbench的多变量多目标优化设计实例教程_Meshing-仿真秀干货文章 (fangzhenxiu.com)https://www.fangzhenxiu.com/post/293815/?inviteCode=z3cy9awa9I4fN

相关阅读推荐:

ANSYS Workbench设计探索与参数优化技术的基本概念与流程

ANSYS Workbench压力容器壁厚优化设计


网站公告

今日签到

点亮在社区的每一天
去签到