通信系统原理[郭宇春]——最佳接收——课后习题答案

发布于:2022-11-02 ⋅ 阅读:(433) ⋅ 点赞:(0)

7-2

(1)画图表示匹配滤波器的h(t)和输出信号波形。

        h(t)=s(t_0-t),t_0=T_b,则MF的输出波形如下:

        其中 s_0(t)=h(t)\ast s(t)

(2)采样时刻 t=t_0,即t=T_b

(3)确定传递函数h(t)

        由图可知

                h(t)=-Arect[\frac{2(t-\frac{T_b}{4})}{T_b}]+Arect[\frac{2(t-\frac{3}{4}T_b)}{T_b}]

                H(\omega)=\frac{-AT_b}{2}Sa(\frac{T_b}{4}\omega)e^{-j\omega\frac{T_b}{4}}+\frac{AT_b}{2}Sa(\frac{T_b}{4}\omega)e^{-j\omega\frac{3T_b}{4}}

(4)\gamma =\frac{2E}{n_0}=\frac{2A^2T_b}{n_0}

        E=\int^{T_B}_0A^2dt=A^2T_b

7-3

(1)系统框图如图所示

(2)根据 h_1(t)=s_1(t_0-t),h_2(t)=s_0(t_0-t) 画出波形如下:

(3)P_e<10^{-5},R_b?

        已知E_1=E_0=E_b=A^2T_b=T_b

        P_e=\frac{1}{2}erfc\{\sqrt{\frac{E_1+E_2-2\rho_{12}\sqrt{E_1E_2}}{4n_0}}\}        当E1=E2且双极性码归零码时

                \rho_{12}=\frac{1}{T_b}\int^{+\infty }_{-\infty}s_1(\tau)s_0(t)dt=-1

        则P_e=\frac{1}{2}erfc\sqrt{\frac{E_b}{n_0}}=\frac{1}{2}(\sqrt{\frac{1}{R_Bn_0}})\leqslant 10^{-5}

        因此\sqrt{\frac{1}{R_bn_0}}\geqslant 3        R_b\leqslant 55kbit/s

7-4 已知  s(t)=Acos\omega_0t   分别进行ML、MF

(1)求S_0(t) (MF)

                n(t)=S(t-t_0)=Acos[\omega_0(T-t)]

        则S_0(t)=h(t)\ast S(t)=\int^{+\infty}_{-\infty}S(\tau)h(t-\tau)d\tau         设T=\frac{2n\pi }{\omega_0}

        当t\in(0,T)

                S_0(t)=\int^t_0Acos\omega_0\tau\cdot Acos[\omega(T-t+\tau)]d\tau\\=\frac{A^2}{2}\int^t_0cos(\omega_0t)d\tau+\int^t_0cos[\omega_0(2\tau-t)]d\tau\\=\frac{A^2t}{2}cos\omega_0t+\int^t_0cos2\omega_0\tau cos\omega_0t+sin2\omega_0\tau sin\omega_0td\tau\\=\frac{A^2t}{2}cos\omega_0t+\frac{sin2\omega_0t cos\omega_0t}{2\omega_0}+\frac{-cos2\omega_0t sin\omega_0t}{2\omega_0}\\=\frac{A^2t}{2}(cos\omega_0t+\frac{sin\omega_0t}{2\omega_0})\\\approx\frac{A^2t}{2}cos\omega_0t

        当t\in(T,2T)

                S_0(t)=\int^t_{t-T}Acos\omega_0\tau\cdot Acos[\omega_0(T-t+\tau)]d\tau

        根据对称性=\frac{A^2(2T-t)}{2}[cos\omega_0t-\frac{sin\omega_0t}{2\omega_0}]                \omega_0 \gg 1

                         \begin{cases} \frac{A^2t}{2}cos\omega_0t & \text{ }0 \leqslant t< T \\ \frac{A^2(2T-t)}{2}cos\omega_0t & \text{ } T\leqslant t\leqslant 2T \\0 & \text{ else} \end{cases}

(2)求{S_0}'(t)

        {S_0}'(t)=\int^t_0S^2(t)dt=\int^t_0A^2cos^2\omega_0tdt=\frac{A^2t}{2}+\frac{A^2}{4\omega_0}sin\omega_0t                \omega_0\gg 1

(3)有表达式可知,两种输出不同,但二者在t=T时刻采样值相同。

7-5  s(t)=1-cos\omega_0t        0\leqslant t \leqslant T,T=\frac{2\pi}{\omega_0}

(1)求冲击响应

(2)确认采样时刻t=T

(3)求\gamma _{max}

        S_0(T)=R_s(0)=E_s=\int^T_0S(t)dt=\int^T_0dt-2\int^T_0cos\omega_0tdt+\int^T_0cos^2\omega_0tdt

        \gamma=\frac{2E_s}{n_0}

7-6  ACK信号S_1(t)=Acos(\omega_0t-\theta)        0\leqslant t \leqslant T

(1)求h(t)

                h(t)=S(T-t)=Acos[\omega_0(-t)-\theta]=Acos(\omega_0t+\theta)

(2)若为匹配滤波器直接匹配波形,则由于采样相位点不确定会产生影响。这时若采用随机相位匹配滤波器,通过包络来反馈采样值就不会有影响

(3)

                S_0(t)=\int^t_0Acos(\omega_0\tau-\theta)\sqrt{\frac{2}{T}}cos(\omega_0(t-\tau))d\tau\\=\frac{A}{2}\sqrt{\frac{2}{T}}[\int^t_0cos(\omega_0t-\theta)d\tau+\int_0^tcos(2\omega_0t-\omega_0\tau-\theta)d\tau]\\=\frac{A}{2}\sqrt{\frac{2}{T}}\cdot t \cdot cos(\omega_0(t-\theta))+\frac{A}{4\omega_0}\sqrt{\frac{2}{T}}[sim(\omega_0t-\theta)+sin(\omega_0t+\theta)]\\\approx At\sqrt{\frac{1}{T}}cos(\omega_0t-\theta)      

        同理,根据对称性

              S_0(t)-(T\sim 2T)\\S_0(t)\approx A(2T-t)\sqrt{\frac{2}{T}}cos(\omega_0t-\theta)

        则取包络后

                S_{LED}\begin{cases} \sqrt{\frac{A^2}{2T}}t & \text{ } 0 \leqslant t <T \\ \sqrt{\frac{A^2}{2T}}(2T-t) & \text{ } T \leqslant t \leqslant 2T \end{cases}

(4)S_0(T)=E_b=\sqrt{\frac{A^2T}{2}}

        \gamma_{max}=\frac{2E_b}{n_0}=1.41\times 10^7

7-8        s_1(t)=Asin2f_1ts_2(t)=Asin2f_2t        0\sim T_s

(1)相干接收机

        相关接收机

 (2)相关接收

                \large \rho_{12}=0,        E_b=\frac{A^2}{2} \cdot T

                P_e=\frac{1}{2}erfc\sqrt{\frac{E_1+E_2+2\rho_1\sqrt{E_1E_2}}{4n_0}}=\frac{1}{2}erfc\sqrt{\frac{E_b}{2n_0}}=\frac{1}{2}erfc(\sqrt{10})

        相干接收

                \gamma=\frac{A^2}{2n_0B}\cdots P_e=\frac{1}{2}erfc(\sqrt{\frac{\gamma}{2}})

                B=2R_b+|f_1-f_0|=80kHz

                P_e\approx 0.12\times 10^{-1}

7-9 相关器接收AWGN信道中DSK信号,Rb=20kbit/s,Si=1uW,SNRi=6dB

(1)画接收机框图

(2)

        \begin{cases} S_1(t)=A_0cos(\omega_0t+\theta_0) & \text{ } 0 \\ S_0(t)=-A_0cos(\omega_0t+\theta_0) & \text{ } \pi \end{cases}

(3)

        \frac{S_i}{N_i}=6dB        B=2R_b=40K        \frac{E_b}{n_0B}=10^{0.6}

                n_0=6.25\times10^{-12}W/Hz

(4)

        P_e=\frac{1}{2}erfc(\sqrt{\gamma})=\frac{1}{2}erfc(\sqrt{\frac{S}{n_0B}})\approx 0.23\times10^{-2}


网站公告

今日签到

点亮在社区的每一天
去签到