1.算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
1.2 算法的复杂度
- 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
- 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
- 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
2.时间复杂度
2.1 时间复杂度的概念
- 时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数(指的是数学里面带未知数的函数表达式),它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i) //执行了N次
{
for (int j = 0; j < N ; ++ j) //执行了N次
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k) //执行了2N次
{
++count;
}
int M = 10;
while (M--) //执行了M次
{
++count;
}
printf("%d\n", count);
}
//最终得出这个程序运行完,一共执行了(N*N+2N+M)次
// 得出F(N) = N^2+2N+M
Func1 执行的基本操作次数 (F(N) = N^2+2N+M):
当N = 10 , F(N) = 130
当N = 100 , F(N) = 10210
当N = 1000 , F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里我们使用大O的渐进表示法。
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项系数存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)
当N = 10, F(N) = 100
当N = 100 , F(N) = 10000
当N = 1000 , F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为****O(N)
2.3常见时间复杂度计算举例
实例1:
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)//执行了2N次
{
++count;
}
int M = 10;
while (M--)// 执行了10次
{
++count;
}
printf("%d\n", count);
}
// 此程序一共执行了(2N+10)次,所以F(N) = 2N+10;根据大O的渐进表示法得时间复杂度为o(N)
实例2:
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k) //执行了M次
{
++count;
}
for (int k = 0; k < N ; ++ k) //执行了N次
{
++count;
}
printf("%d\n, count);
}
// 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
// 如果M远大于N,则为o(M)
// 如果N远大于M,则为o(N)
// 如果N和M一样大,则为o(N) 或者 o(M)
实例3:
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)//执行了100次
{
++count;
}
printf("%d\n", count);
}
// 实例3基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)
// 用常数1取代运行时间中的所有加法常数
实例4:
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
// 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
实例5:
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)//趟数,最多有N-1趟
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
// 最坏情况执行了N-1趟--> 第1趟有N个数两两进行交换,执行了N-1次,第2趟执行了N-2次,第N-1趟执行了1次
// 一共执行了 (N-1)+(N-2)+……+3+2+1 = N*(N-1)/2; 等差数列:(首项+尾项)*项数/2
// 因此时间复杂度为o(N^2)
实例6:
// 计算BinarySearch(二分查找)的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}
// 最终得出二分查找的时间复杂度为logN
实例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N) //0~N闭区间,一共N+1个数
return 1;
return Fac(N-1)*N;
}
// 实例7通过计算分析发现基本操作递归了N+1,时间复杂度为O(N)。
//补充代码
long long Fac(size_t N)
{
for(size_t i = 0; i < N; i++)
printf("%d", i);
if(0 == N)
return 1;
return Fac(N-1)*N;
}
// 一共递归了N次, 第一次执行了N次,第二次执行了N-1次,…………,第N次执行了1次,第N+1次执行了0次
// 所以总共执行了(N + N-1 + N-2+…………+2 + 1 = (N+1)*N/2)
// 通过推导大O阶方法知道,时间复杂度为 O(N^2)
实例8:
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
3.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0; // 开辟了4byte
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
// 空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。
// 传参过来的数组所占用的空间并不是临时占用的,而是作为一个条件给我们,让我们来实现这个算法,
// 因此,这个冒泡排序的空间复杂度为o(1)
// 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
实例2:
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
// 实例2动态开辟了N+1个空间,空间复杂度为 O(N)
实例3:
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
实例4:
// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
4. 复杂度的oj练习
4.1练习
进阶:
- 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
- 你可以使用空间复杂度为
O(1)
的 原地 算法解决这个问题吗?
// 思路三的参考代码
void reverse(int* nums, int begin, int end)
{
while(end > begin)
{
int tmp = nums[end];
nums[end] = nums[begin];
nums[begin] = tmp;
begin++;
end--;
}
}
void rotate(int* nums, int numsSize, int k)
{
if(k > numsSize)
k %= numsSize; // 简化轮转的次数
// 将后k个数逆置
reverse(nums, numsSize - k, numsSize -1);
// 将前k个数逆置
reverse(nums, 0, numsSize - k - 1);
// 将整个数组逆置
reverse(nums, 0, numsSize-1);
}