#导入库
 import pandas as pd 
 import seaborn as sns
 import numpy as np
 import os
 import matplotlib.pyplot as plt
 import matplotlib as mpl
 # 设置全局的字体
 mpl.rcParams['font.family'] = 'serif'
 mpl.rcParams['font.serif'] = 'Times New Roman'
 mpl.rcParams['font.style'] = 'normal'
 mpl.rcParams['font.variant'] = 'normal'
 mpl.rcParams['font.weight'] = 'normal'
 mpl.rcParams['font.stretch'] ='normal'
 mpl.rcParams['font.size'] = 9
 #设置需要分析相关性的参数,我这里共有16个参数需要作相关性分析
 names = ["Soil available Cd content ",    "Edible tissue Cd content",    "Polysaccharide content" ,    "Pgm gene copies",    "Organic matter content",    "Organic-bound Cd","Fe-Mn oxide-bound Cd"]   #设置变量名
 # #设置路径
 # os.chdir(os.getcwd()) #os.getcwd()获取当前路径,os.chdir(...)改变路径为...
 # #输入数据
 data = pd.read_csv("C:/Users/zhuyupeng/Documents/WeChat Files/wxid_lia154ch2mwi22/FileStorage/File/2022-08/相关性矩阵.csv")  #点击打开链接,参考此文对pandas读取文件的用法
 # #求解相关系数
 correction = data.corr() 
 # correction=abs(correlations)# 取绝对值,只看相关程度 ,不关心正相关还是负相关
 # # plot correlation matrix 
 plt.figure(figsize=(10,8),dpi=600)
 # ax = fig.add_subplot(figsize=(20,20)) #图片大小为20*20
 ax = sns.heatmap(correction,cmap="Greens", linewidths=0.05,vmax=1, vmin=0 ,annot=True,annot_kws={'size':12,'weight':'bold'})
 #热力图参数设置(相关系数矩阵,颜色,每个值间隔等)
 plt.xticks(np.arange(7)+0.5,names,fontsize=15) #横坐标标注点
 plt.yticks(np.arange(7)+1.5,names,fontsize=15) #纵坐标标注点
 #ax.set_xticks(ticks) #生成刻度 
 #ax.set_yticks(ticks)
 #ax.set_xticklabels(names) #生成x轴标签 
 #ax.set_yticklabels(names)
 ax.set_title('Characteristic correlation')#标题设置
 # plt.savPlt.style.useefig('cluster.tif',dpi=300)
 plt.style.use("ggplot")
 plt.savefig("C:/Users/zhuyupeng/Desktop/新建文件夹/相关性.png",bbox_inches = 'tight')
 # plt.show()
