如何训练神经网络
1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。
Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。
由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。
一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。
2、设置端到端的训练评估框架处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。
获得准确度等衡量模型的标准,用模型进行预测。这个阶段的技巧有:·固定随机种子使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。·简单化在此阶段不要有任何幻想,不要扩增数据。
扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。
·在评估中添加有效数字在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。·在初始阶段验证损失函数验证函数是否从正确的损失值开始。
例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。·初始化正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。
如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。·人类基线监控除人为可解释和可检查的损失之外的指标。
尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。
·设置一个独立于输入的基线最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。·过拟合一个batch增加了模型的容量并验证我们可以达到的最低损失。
·验证减少训练损失尝试稍微增加数据容量。
如何用神经网络遗传算法求极值?
===============学习神经网络可以到================可以先用matlab神经网络工具箱训练网络,当网络训练好之后,把网络存起来.然后编写遗传算法,你知道,遗传算法是每代不断迭代的,然后每代会根据适应度决定是否进入下一代,这里的适应度你就用sim(net,x)得到的值的倒数(或者类似的)作为适应度,然后其它就和遗传算法没什么两样了.最后得到的最优解,就是网络的最优解.也就是你要的结果了.不过兄弟,这想法很牛B,很值得鼓励这样的想法.但我不得不说两句,从实际角度来说,这样的实现没有太大的意义.你的目的就是想从数据中找到Y最小的时候,X的什么值,但数据上毕竟只是数据,不管你怎么绕,透露出来的信息还是有限的,不管怎么绕,其实数据能提供最大限度的信息就是:在Y=10.88时,即X1=25,X2=24....X6=1.5时,Y是最小值的,这是数据能提供的最大限度的信息,你再怎么绕,其实当你懂得神经网络的深层原理时,你会发现,你的方案并没能挖掘出更优的解(因为数据的信息是有限的),这只是把自己绕晕了不过能有这样的想法,兄弟肯定是个学习的好材料,加油.===============学习神经网络可以到================。
OPENNN如何加快神经网络训练速度(54个输入,100个隐层,1个输出)?
开头注释:针对这些问题,都是在tensorflow框架下,去寻找代码解决问题的。
所以非tensorflow框架下编程的,可以看看出现该类问题的原因,以及解决问题的方向,具体的解决问题的代码需要自行查阅资料。
情况1:训练速度慢针对实体链接任务,搭建了Bi-LSTM+CNN的模型,目前训练速度很慢,半个小时才出一个批次的预测结果。
类比于手写数字识别,无论是使用LSTM,还是CNN,都不会很慢,最慢的至少在10分钟内能出每一个批次的预测结果。
bp神经网络训练速度慢怎么调整
BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hidelayer)和输出层(outputlayer)。人工神经网络就是模拟人思维的第二种方式。
这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
怎样可以提高神经网络的收敛速度
神经网络BP算法中,如何选择网络学习效率及阈值调整效率