如何人工神经网络来预测下一个数值
newff函数建立BP神经网络,历史数据作为样本,例如前n个数据作为输入,输入节点为n。当前数据作为p,输出节点为1。隐层节点根据试凑法得到。
通过matlab的train函数,得到训练好的BP神经网络。再将当前预测点的前n个数据作为输入,输出即为当前的预测值。
人工神经网络可以解决哪些问题
信息领域中的应用:信息处理、模式识别、数据压缩等AI爱发猫 www.aifamao.com。自动化领域:系统辨识、神经控制器、智能检测等。工程领域:汽车工程、军事工程、化学工程、水利工程等。
在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。经济领域的应用:市场价格预测、风险评估等。此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。
请问:如何用人工神经网络来进行预测? 35
用第1月到第25月的输入数据,和第1月到第25月的输出数据作为网络的训练数据,然后将你第26月的对应的输入作为网络的输入,就可以得出第26月的输出。
你可以在网上下个别人使用过的神经网络的模板或工具箱,修改成自己需要的就是了。
什么是人工神经网络及其算法实现方式
人工神经网络(ArtificialNeuralNetwork,即ANN),是20世纪80年代以来人工智能领域兴起的研究热点。
它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activationfunction)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
人工神经网络做预测时误差问题 10
BP人工神经网络预测 15
完全可以,神经网络就是这样用的,极其适用于描述难以给出具体的数学表达式的非线性映射。通过历史样本对网络的训练,可以使网络映射该非线性关系,从而进行可靠性很高的预测。
可以使用BP、Elman、RBF网络,这些网络效果较好。建议使用MATLAB编程,较为方便,因为该数学软件包含神经网络工具箱。如果你装了Matlab,可以运行下附件的例子试一下。