STM32实现三个串口同时开启发送接收数据

发布于:2024-03-29 ⋅ 阅读:(14) ⋅ 点赞:(0)

程序目的:

        实现STM32开通三个串口,每个串口都可以实现接收和发送数据。

注意事项:

        编程时,严禁在中断函数中写入发送串口数据代码,否则会出错,具体原因不清楚(有大佬知道的话帮我指出),可能原因是DR寄存器冲突导致。

开始编程:

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
//#include "OLED.h"
//#include "Delay.h"
#include <stdarg.h>
char Serial_RxPacket1[100];
char Serial_RxPacket2[100];
uint8_t Serial_RxFlag1;
uint8_t Serial_RxFlag2;
uint8_t Serial_RxFlag3;
void Serial_Init(USART_TypeDef *USARTx) {
	
	GPIO_InitTypeDef GPIO_Init_Structure;                            //定义GPIO结构体
    USART_InitTypeDef USART_Init_Structure;                          //定义串口结构体
	NVIC_InitTypeDef  NVIC_Init_Structure;							 //定义中断结构体

	if(USARTx == USART1){
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,  ENABLE);              //开启GPIOA时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,  ENABLE);            	//开启APB2总线复用时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,  ENABLE);         	//开启USART1时钟
		
		GPIO_Init_Structure.GPIO_Mode = GPIO_Mode_AF_PP;				//复用推挽输出
		GPIO_Init_Structure.GPIO_Pin = GPIO_Pin_9;
		GPIO_Init_Structure.GPIO_Speed = GPIO_Speed_50MHz;
		GPIO_Init(GPIOA, &GPIO_Init_Structure);
		
		GPIO_Init_Structure.GPIO_Mode = GPIO_Mode_IPU;					//浮空输入或者上拉输入,使用上拉输入抗干扰能力更强
		GPIO_Init_Structure.GPIO_Pin = GPIO_Pin_10;
		GPIO_Init_Structure.GPIO_Speed = GPIO_Speed_50MHz;
		
		USART_Init_Structure.USART_BaudRate = 115200;					//波特率
		USART_Init_Structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件流控制(不使用,CTS,CTS&RTS)
		USART_Init_Structure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//串口模式 可以使用(或)|符号实现Tx和Rx同时设置
		USART_Init_Structure.USART_Parity = USART_Parity_No;				//校验位,无需校验
		USART_Init_Structure.USART_StopBits = USART_StopBits_1;				//停止位,选择1位
		USART_Init_Structure.USART_WordLength = USART_WordLength_8b;		//字长
		USART_Init(USART1, &USART_Init_Structure);
		
		USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);						//开启RXNE到NVIC的输出,开启中断
		NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
		
		NVIC_Init_Structure.NVIC_IRQChannel = USART1_IRQn;
		NVIC_Init_Structure.NVIC_IRQChannelCmd = ENABLE;
		NVIC_Init_Structure.NVIC_IRQChannelPreemptionPriority = 1;
		NVIC_Init_Structure.NVIC_IRQChannelSubPriority = 1;
		NVIC_Init(&NVIC_Init_Structure);
	}
	if(USARTx == USART2) {
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,  ENABLE);           //开启GPIOA时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,  ENABLE);            //开启APB2总线复用时钟
		RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,  ENABLE);          //开启USART1时钟
		
		//配置PA2 TX
		GPIO_Init_Structure.GPIO_Mode  = GPIO_Mode_AF_PP;                //复用推挽
		GPIO_Init_Structure.GPIO_Pin   = GPIO_Pin_2;
		GPIO_Init_Structure.GPIO_Speed = GPIO_Speed_10MHz;
		
		GPIO_Init(GPIOA, &GPIO_Init_Structure);
		
		//配置PA3 RX
		GPIO_Init_Structure.GPIO_Mode  = GPIO_Mode_IPU;         
		GPIO_Init_Structure.GPIO_Pin   = GPIO_Pin_3;
		GPIO_Init(GPIOA, &GPIO_Init_Structure);
			
		USART_Init_Structure.USART_BaudRate = 115200;                                          //波特率设置为115200
		USART_Init_Structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;       //硬件流控制为无
		USART_Init_Structure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;                       //模式设为收和发
		USART_Init_Structure.USART_Parity = USART_Parity_No;                                   //无校验位
		USART_Init_Structure.USART_StopBits = USART_StopBits_1;                                //一位停止位
		USART_Init_Structure.USART_WordLength = USART_WordLength_8b;                           //字长为8位  
		USART_Init(USART2, &USART_Init_Structure);  
		USART_Cmd(USART2, ENABLE);
			
		USART_ITConfig(USART2,USART_IT_RXNE,ENABLE);
		NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
		
		NVIC_Init_Structure.NVIC_IRQChannel 			=   USART2_IRQn;
		NVIC_Init_Structure.NVIC_IRQChannelCmd   	=   ENABLE;
		NVIC_Init_Structure.NVIC_IRQChannelPreemptionPriority  =  1;
		NVIC_Init_Structure.NVIC_IRQChannelSubPriority         =  1;
		NVIC_Init(&NVIC_Init_Structure);
	}
	if(USARTx == USART3) {
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,  ENABLE);                 //开启GPIOA时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,  ENABLE);            	   //开启APB2总线复用时钟
		RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,  ENABLE);          	   //开启USART1时钟
		
		//配置PB10 TX
		GPIO_Init_Structure.GPIO_Mode  = GPIO_Mode_AF_PP;                	   //复用推挽
		GPIO_Init_Structure.GPIO_Pin   = GPIO_Pin_10;
		GPIO_Init_Structure.GPIO_Speed = GPIO_Speed_10MHz;
		GPIO_Init( GPIOB, &GPIO_Init_Structure);
		//配置PB11 RX
		GPIO_Init_Structure.GPIO_Mode  = GPIO_Mode_IN_FLOATING;
		GPIO_Init_Structure.GPIO_Pin   = GPIO_Pin_11;
		GPIO_Init( GPIOB, &GPIO_Init_Structure);
		
		USART_Init_Structure.USART_BaudRate = 115200;                                          //波特率设置为115200
		USART_Init_Structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;       //硬件流控制为无
		USART_Init_Structure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;                       //模式设为收和发
		USART_Init_Structure.USART_Parity = USART_Parity_No;                                   //无校验位
		USART_Init_Structure.USART_StopBits = USART_StopBits_1;                                //一位停止位
		USART_Init_Structure.USART_WordLength = USART_WordLength_8b;                           //字长为8位   
		USART_Init(USART3, &USART_Init_Structure);   
		USART_Cmd(USART3, ENABLE);
			
		USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);
		NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
		
		NVIC_Init_Structure.NVIC_IRQChannel 				   = USART3_IRQn;
		NVIC_Init_Structure.NVIC_IRQChannelCmd				   = ENABLE;
		NVIC_Init_Structure.NVIC_IRQChannelPreemptionPriority  = 1;
		NVIC_Init_Structure.NVIC_IRQChannelSubPriority         = 1;
		NVIC_Init(&NVIC_Init_Structure);
	}
}
void Serial_SendByte(USART_TypeDef *USARTx,uint8_t Byte) {
	USART_SendData(USARTx, Byte);//发送数据
	while(USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET) {//等待发送寄存器空,
		//TXE就是发送寄存器空的标志位,不需要手动清零,下一次发送数据时候会自动清零
	}
}
void Serial_SendArray(USART_TypeDef *USARTx, uint8_t *Array, uint16_t Length){
	uint16_t i;
	for(int i = 0; i < Length; i++) {
		Serial_SendByte(USARTx, Array[i]);
	}

}
void Serial_SendString(USART_TypeDef *USARTx, char *Str) {//字符串自带结束标志位
	uint8_t i;
	for(int i = 0; Str[i] != '\0'; i++) {
		Serial_SendByte(USARTx, Str[i]);
	}
}

//*****************************************发送数字
uint32_t Serial_Pow(uint32_t X, uint32_t y) {
	uint32_t Result = 1;
	while(y--) {
		Result *= X;
	}
	return Result;
}
void Serial_SendNumber(USART_TypeDef *USARTx, uint32_t Number, uint8_t Length) {
	uint8_t i;
	for(int i = 0; i < Length; i++){
		Serial_SendByte(USARTx, (Number / Serial_Pow(10, Length - i - 1)) % 10 + '0');
	}

}
//*****************************************发送数字

int fputc(int ch, FILE* f){
	Serial_SendByte(USART1, ch);//重定向到串口1,使得Printf打印到串口
	return ch;

}
//使用sprintf让其他的串口也能使用,sprintf可以把格式化字符输出到一个字符串里
void Serial_Printf(USART_TypeDef *USARTx, char* format,...){
	char String[100];
	va_list arg;
	va_start(arg, format);
	vsprintf(String, format, arg);
	va_end(arg);
	Serial_SendString(USARTx,String);
}

uint8_t Serial_GetRxFlag(USART_TypeDef *USARTx) {
	if(USARTx == USART1) {
		if(Serial_RxFlag1 == 1){
			Serial_RxFlag1 = 0;
			return 1;
		}
	}
	else if(USARTx == USART2) {
		if(Serial_RxFlag2 == 1){
			Serial_RxFlag2 = 0;
			return 1;
		}
	}
	else if(USARTx == USART3) {
		if(Serial_RxFlag3 == 1){
			Serial_RxFlag3 = 0;
			return 1;
		}
	}
	return 0;
}
void Serial_SendPacket(USART_TypeDef *USARTx){

}

void USART1_IRQHandler() {
	static uint8_t RxState = 0;//类似全局变量,函数进入只会初始化一次0,函数退出仍然有效,与全局函数不同,静态变量只能在本函数中使用
	static uint8_t pRxPacket = 0;
	char temp;
	//Serial_SendString(USART1,"Led Open Successful\r\n");
	//Delay_ms(1000);
	if(USART_GetITStatus(USART1,USART_IT_RXNE)!= RESET)
	{
		uint8_t RxData = USART_ReceiveData(USART1);
		if(RxState == 0){
		//若在这里将RxState置为1,那么下面就会立马执行,因此要加上else,也可用switch case语句
			if(RxData == '@') {
				RxState = 1;
				pRxPacket = 0;
			}
		}
		else if(RxState == 1) {
			if(RxData == '\r'){
				RxState = 2;
			}
			else {
				Serial_RxPacket1[pRxPacket] = RxData;
				pRxPacket ++;
			}
		}
		else if(RxState ==  2){
			if(RxData == '\n') {
				RxState = 0;
				Serial_RxFlag1 = 1;
				Serial_RxPacket1[pRxPacket] = '\0';//不加不能使用OLED_ShowString
			}
		}
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);
	}
}
void USART2_IRQHandler() {
	static uint8_t RxState = 0;//类似全局变量,函数进入只会初始化一次0,函数退出仍然有效,与全局函数不同,静态变量只能在本函数中使用
	static uint8_t pRxPacket = 0;
	char temp;
	//Serial_SendString(USART2,"Led Open Successful\r\n");
	//Delay_ms(10);
	if(USART_GetITStatus(USART2,USART_IT_RXNE)!= RESET)
	{
		uint8_t RxData = USART_ReceiveData(USART2);
		if(RxState == 0){
		//若在这里将RxState置为1,那么下面就会立马执行,因此要加上else,也可用switch case语句
			if(RxData == '@') {
				RxState = 1;
				pRxPacket = 0;
			}
		}
		else if(RxState == 1) {
			if(RxData == '\r'){
				RxState = 2;
			}
			else {
				Serial_RxPacket2[pRxPacket] = RxData;
				pRxPacket ++;
			}
		}
		else if(RxState ==  2){
			if(RxData == '\n') {
				RxState = 0;
				Serial_RxFlag2 = 1;
				Serial_RxPacket2[pRxPacket] = '\0';//不加不能使用OLED_ShowString
			}
		}
		USART_ClearITPendingBit(USART2, USART_IT_RXNE);
	}
}
void USART3_IRQHandler(void)
{
	char temp;
	if(USART_GetITStatus(USART3,USART_IT_RXNE)!= RESET)
	{
		temp = USART_ReceiveData(USART3);
		if(temp == 'O')
		{
			GPIO_ResetBits(GPIOC,GPIO_Pin_13);
			Serial_SendString(USART3,"Led Open Successful\r\n");		
		}
		if(temp == 'C')
		{
			GPIO_SetBits(GPIOC,GPIO_Pin_13);
			Serial_SendString(USART3,"Led Close Successful\r\n");
		}
	}
}

Serial.h

#ifndef __SERIAL_H
#define __SERIAL_H
#include <stdio.h>
extern char Serial_RxPacket1[];
extern char Serial_RxPacket2[];
void Serial_Init(USART_TypeDef *USARTx);
void Serial_SendByte(USART_TypeDef *USARTx,uint8_t Byte);
void Serial_SendArray(USART_TypeDef *USARTx,uint8_t *Array, uint16_t Length);
void Serial_SendString(USART_TypeDef *USARTx,char *String);
void Serial_SendNumber(USART_TypeDef *USARTx,uint32_t Number, uint8_t Length);
void Serial_Printf(USART_TypeDef *USARTx,char* format,...);
uint8_t Serial_GetRxFlag(USART_TypeDef *USARTx);


#endif

GpioControl.c

#include "stm32f10x.h"                  // Device header

void GpioInit(GPIO_TypeDef *GPIOx, uint16_t Pin, GPIOMode_TypeDef GpioMode){
	uint32_t RCC_APB2Periph_GPIOx;
	if(GPIOx == GPIOA) {
		RCC_APB2Periph_GPIOx = RCC_APB2Periph_GPIOA;
	}
	else if(GPIOx == GPIOB) {
		RCC_APB2Periph_GPIOx = RCC_APB2Periph_GPIOB;
	}
	else if(GPIOx == GPIOC) {
		RCC_APB2Periph_GPIOx = RCC_APB2Periph_GPIOC;
	}
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOx, ENABLE);//ctrl + Alt + 空格:可以出现代码提示
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GpioMode;//推挽输出
	GPIO_InitStructure.GPIO_Pin = Pin;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOx, &GPIO_InitStructure);
	GPIO_ResetBits(GPIOx, Pin);
}
void GpioTurn(GPIO_TypeDef *GPIOx, uint16_t GPIO_PIN) {//反转当前引脚状态
	if(GPIO_ReadOutputDataBit(GPIOx,GPIO_PIN) == 0){
		GPIO_SetBits(GPIOx,GPIO_PIN);
	}
	else{
		GPIO_ResetBits(GPIOx, GPIO_PIN);
	}
}
void GpioControl(GPIO_TypeDef *GPIOx, uint16_t GPIO_PIN, uint8_t sign) {//控制引脚
	if(sign == ENABLE){
		GPIO_SetBits(GPIOx, GPIO_PIN);
	}
	if(sign == DISABLE){
		GPIO_ResetBits(GPIOx, GPIO_PIN);
	}
}

GpioControl.h

#ifndef __GPIOCONTROL_H
#define __GPIOCONTROL_H

void GpioInit(GPIO_TypeDef *GPIOx, uint16_t Pin, GPIOMode_TypeDef GpioMode);
void GpioTurn(GPIO_TypeDef *GPIOx, uint16_t GPIO_PIN);
void GpioControl(GPIO_TypeDef *GPIOx, uint16_t GPIO_PIN, uint8_t sign);

#endif 

main.c

#include "stm32f10x.h"                  // Device header
//#include "DELAY.h"
//#include "OLED.h"
#include "Serial.h"
//#include "DigitalSwitch.h"
#include "GpioControl.h"
#include <string.h>
uint8_t RxData;
uint8_t KeyNum;

int main() {
	GpioInit(GPIOC, GPIO_Pin_13, GPIO_Mode_Out_PP);
	GPIO_SetBits(GPIOC,GPIO_Pin_13);
//	DigitalSwitchInit(GPIOA, GPIO_Pin_1, GPIO_Mode_IPU);
	OLED_Init();
	Serial_Init(USART1);
	Serial_Init(USART2);
	Serial_Init(USART3);

	//OLED_ShowString(1, 1, "TxData:");
	//OLED_ShowString(3, 1, "RxData:");

	while(1){
		
		if(Serial_GetRxFlag(USART1) == 1) {
			if(strcmp(Serial_RxPacket1, "LED_ON") == 0) {
				GPIO_ResetBits(GPIOC,GPIO_Pin_13);
				Serial_SendString(USART1,Serial_RxPacket1);
			}
			else if(strcmp(Serial_RxPacket1, "LED_OFF") == 0) {
				GPIO_SetBits(GPIOC,GPIO_Pin_13);
				Serial_SendString(USART1,Serial_RxPacket1);
			}
		}
		if(Serial_GetRxFlag(USART2) == 1) {
			if(strcmp(Serial_RxPacket2, "LED_ON") == 0) {
				GPIO_ResetBits(GPIOC,GPIO_Pin_13);
				Serial_SendString(USART2,Serial_RxPacket2);
			}
			else if(strcmp(Serial_RxPacket2, "LED_OFF") == 0) {
				GPIO_SetBits(GPIOC,GPIO_Pin_13);
				Serial_SendString(USART2,Serial_RxPacket2);
			}
		}
		
	}
}

程序现象:

        RX,TX连接到A9,A10使用串口1,使用串口工具发送@LED_ON指令(记得发送时候按下回车,将\n也发送出去),串口回传LED_ON,同时LED灯被打开,发送LED_OFF同理。

        RX,TX连接到A2,A3使用串口2,使用串口工具发送@LED_ON指令(记得发送时候按下回车,将\n也发送出去),串口回传LED_ON,同时LED灯被打开,发送LED_OFF同理。

        RX,TX连接到B10,B11使用串口3,使用串口工具发送O字符,串口回传Led Open Successful\r\n,同时LED灯被打开,发送C字符同理。

本文含有隐藏内容,请 开通VIP 后查看