C++进阶:AVL树

发布于:2024-05-06 ⋅ 阅读:(16) ⋅ 点赞:(0)

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下 。因此,两位俄罗斯的数学家 G.M. A delson- V elskii
E.M. L andis 1962 年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ) ,即可降低树的高度,从而减少平均搜索长度。
一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是 AVL
左右子树高度之差 ( 简称平衡因子 ) 的绝对值不超过 1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在
O(log2 n) ,搜索时间复杂度 O(log2 n)

AVL树节点的定义

AVL 树节点的定义:(三叉链)
template < class T >
struct AVLTreeNode
{
AVLTreeNode ( const T & data )
    : _left ( nullptr ), _right ( nullptr ), _parent ( nullptr )
    , _data ( data ), _bf ( 0 )
{}
AVLTreeNode < T >* _left ;   // 该节点的左孩子
AVLTreeNode < T >* _right ;   // 该节点的右孩子
AVLTreeNode < T >* _parent ; // 该节点的双亲
T _data ;
int _bf ;                   // 该节点的平衡因子
};

AVL树的插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么
AVL 树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子(这里默认平衡因子=右子树高度-左子树高度)
举例:采用KV模型(K模型也可以)
#pragma once
#include<assert.h>
#include<iostream>
using namespace std;

template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	pair<K, V> _kv;

	int _bf;// balance factor

	AVLTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	// logN
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;

		// 更新平衡因子
		while (parent)//parent为空时更新结束,此时已经更新到根节点
		{
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				//更新结束
				break;
			}
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == -2 || parent->_bf == 2)
			{
				// 当前子树出问题了,需要旋转平衡一下
				//...
				break;
			}
			else
			{
				// 理论而言不可能出现这个情况
				assert(false);
			}
		}
		return true;
	}
private:
	Node* _root = nullptr;
};

AVL树的旋转

如果在一棵原本是平衡的 AVL 树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同, AVL 树的旋转分为四种:

1. 新节点插入较高左子树的左侧---左左:右单旋

 

 

/*
  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
     
此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
	void RotateR(Node* parent)
	{
		// subL: parent的左孩子
		// subLR: parent左孩子的右孩子
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		// 旋转完成之后,30的右孩子作为双亲的左孩子
		parent->_left = subLR;
		
		// 如果30的左孩子的右孩子存在,更新亲双亲
		if (subLR)
			subLR->_parent = parent;
		
		// 60 作为 30的右孩子
		subL->_right = parent;
		
		// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
		Node* ppNode = parent->_parent;

		// 更新60的双亲
		parent->_parent = subL;

		// 如果60是根节点,更新指向根节点的指针
		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			// 如果60是子树,可能是其双亲的左子树,也可能是右子树
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			
			// 更新30的双亲
			subL->_parent = ppNode;
		}
		// 根据调整后的结构更新部分节点的平衡因子
		parent->_bf = subL->_bf = 0;
	}

2. 新节点插入较高右子树的右侧---右右:左单旋

 实现及情况考虑可参考右单旋。

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;

		Node* ppNode = parent->_parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
		parent->_bf = subR->_bf = 0;
	}