前情提要
检索增强生成(RAG)技术,作为 AI 领域的尖端技术,能够提供可靠且最新的外部知识,极大地便利了各种任务。在 AI 内容生成的浪潮中,RAG 通过其强大的检索能力为生成式 AI 提供了额外的知识,助力其产出高质量内容。尽管大型语言模型(LLMs)在语言处理上展现了突破性的能力,但仍受限于内部知识的幻觉和过时。因此,检索增强的 LLMs 应运而生,它们利用外部权威知识库,而非仅依赖内部知识,以提升生成质量。
遇到问题
针对pptx的文档解析技术存在已久,但是ppt格式文件无法进行解析,且我没有搜索到在Linux系统服务器中ppt转pptx的资料,window系统中倒是可以转换
解决方案
安装系统依赖
apt-get install unoconv
apt-get install libreoffice
安装软件包依赖
pip install unoconv
pip install pyuno
pip install weaviate-client
pip install unstructured[all-docs] == 0.13.3
pip install python-dotenv
代码demo
import glob
import os
import subprocess
import weaviate
import weaviate.classes as wvc
from dotenv import load_dotenv
from unstructured.chunking.title import chunk_by_title
from unstructured.documents.elements import CompositeElement, Table
from unstructured.partition.pptx import partition_pptx
from weaviate.config import AdditionalConfig
load_dotenv()
os.environ['UNO_PATH'] = '/usr/lib/libreoffice'
os.environ['PATH'] += ':/usr/lib/libreoffice/program'
file_path = "/your/ppt_path/case_1.ppt"
def extract_text(file_name: str):
elements = partition_pptx(
filename=file_name,
multipage_sections=True,
infer_table_structure=True,
include_page_breaks=False,
)
chunks = chunk_by_title(
elements=elements,
multipage_sections=True,
combine_text_under_n_chars=0,
new_after_n_chars=None,
max_characters=4096,
)
text_list = []
for chunk in chunks:
if isinstance(chunk, CompositeElement):
text = chunk.text
text_list.append(text)
elif isinstance(chunk, Table):
if text_list:
text_list[-1] = text_list[-1] + "\n" + chunk.metadata.text_as_html
else:
text_list.append(chunk.hunk.metadata.text_as_html)
result_dict = {"无标题":[]}
for text in text_list:
split_text = text.split("\n\n", 1)
if len(split_text) == 2:
title, text = split_text
if title not in result_dict:
result_dict[title] = []
result_dict[title].append(text)
else:
result_dict["无标题"].append(text)
return result_dict
def split_chunks(text_list: list, source: str):
chunks = []
for text in text_list:
for key, value in text.items():
chunks.append({"question": key, "answer": value, "source": source})
return chunks
def convert_ppt_to_pptx(ppt_file_path):
# Define the command to run LibreOffice in headless mode
command = [
'libreoffice',
'--headless',
'--convert-to', 'pptx',
'--outdir', os.path.dirname(ppt_file_path),
ppt_file_path
]
# Run the command
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
raise RuntimeError(f"Failed to convert '{ppt_file_path}' to PPTX.\nError: {result.stderr}")
return ppt_file_path.replace('.ppt', '.pptx')
pptx_file_path = convert_ppt_to_pptx(file_path)
print("convert ppt to pptx done")
contents = extract_text(pptx_file_path)
for k,v in contents.items():
print(k,v)
print("__"*30)