默认成员函数
构造函数
iterator _start = nullptr;
iterator _finish = nullptr;
iterator _endofstorage = nullptr;
普通构造
构造一个空vector,size和capacity为0
vector()
{}
赋值构造
用n个val值进行初始化
vector(int n, const T& value = T())
{
T* tmp = new T[n];
for (int i = 0; i < n; i++)
{
push_back(value);
}
_finish = _endofstorage = _start + n;
}
区间构造
用一段迭代器区间进行初始化,由于不同类型的容器迭代器类型可能不同,因此设计成函数模板,将区间内的内容尾插到vector即可。
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{
iterator it = first;
while (it < last)
{
push_back(*it);
it++;
}
}
拷贝构造函数
拷贝时为了防止陷入死循环,反复进入拷贝函数,因此用vector<T>& v(传引用返回),拷贝这儿不用更改用const修饰
进入范围for后需要调用begin()函数,但是v是const类型,无法调用非const类型函数,因此需要一个this指针是const类型的begin()函数
范围for的函数定义用到了begin(),而且用到的是const类型
vector(const vector<T>& v)
{
for (auto& e : v)
{
push_back(e);
}
}
赋值运算符重载
借用了编译器,传值调用时会将参数拷贝一份,然后生成新指针与他交换
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
析构函数
~vector()
{
if (_start)
{
delete[] _start;
}
_start = _finish = _endofstorage = nullptr;
}
迭代器:
begin() / end()
typedef T* iterator;
typedef const T* const_iterator;
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator cbegin()const
{
return _start;
}
const_iterator cend()const
{
return _finish;
}
const_iterator begin()const
{
return _start;
}
const_iterator end()const
{
return _finish;
}
容量:
size
size_t size()const
{
return _finish - _start;
}
capacity
size_t capacity()const
{
return _endofstorage - _start;
}
reserve
1) 当n大于对象大于当前capacity时,扩容
2)扩容时为什么不适用memcpy,因为假如vector的每个成员是string类型或者vector类型,memcpy按字节拷贝只会将三个指针拷贝过去,属于浅拷贝,没有开辟新的空间。因此只能通过赋值来实现。
void reserve(size_t n)
{
if (n > capacity())
{
size_t len = _finish - _start;
T* tmp = new T[n];
//memcpy(tmp, _start, size() * sizeof(T));
for (int i = 0; i < size(); i++)
{
tmp[i] = _start[i];
}
delete[] _start;
_start = tmp;
_finish = _start + len;
_endofstorage = _start + n;
}
}
resize
当n小于size()时,_finish指针直接往前移就可以了
当n大于capacity时,扩容之后在赋值
void resize(size_t n, const T& value = T())
{
if (n <= size())
{
_finish = _start + n;
}
else
{
reserve(n);
while (_finish < _start+n)
{
*_finish = value;
++_finish;
}
}
}
empty
bool empty()const
{
return _start==_finish;
}
访问:
[ ]
返回数组对应位置的值就行了
T& operator[](size_t pos)
{
return _start[pos];
}
const T& operator[](size_t pos)const
{
return _start[pos];
}
整体代码
#pragma once
#include <iostream>
#include <assert.h>
using namespace std;
namespace bit
{
template<class T>
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator cbegin()const
{
return _start;
}
const_iterator cend()const
{
return _finish;
}
const_iterator begin()const
{
return _start;
}
const_iterator end()const
{
return _finish;
}
vector()
{}
vector(int n, const T& value = T())
{
T* tmp = new T[n];
for (int i = 0; i < n; i++)
{
push_back(value);
}
_finish = _endofstorage = _start + n;
}
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{
iterator it = first;
while (it < last)
{
push_back(*it);
it++;
}
}
vector(const vector<T>& v)
{
//拷贝时为了防止陷入死循环,反复进入拷贝函数,因此用vector<T>& v(传引用返回),拷贝这儿不用更改用const修饰
//进入范围for后需要调用begin()函数,但是v是const类型,无法调用非const类型函数,因此需要一个this指针是const类型的begin()函数
//范围for的函数定义用到了begin(),而且用到的是const类型
for (auto& e : v)
{
push_back(e);
}
}
//借用了编译器,传值调用时会将参数拷贝一份,然后生成新指针与他交换
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
~vector()
{
if (_start)
{
delete[] _start;
}
_start = _finish = _endofstorage = nullptr;
}
size_t size()const
{
return _finish - _start;
}
size_t capacity()const
{
return _endofstorage - _start;
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t len = _finish - _start;
T* tmp = new T[n];
//memcpy(tmp, _start, size() * sizeof(T));
for (int i = 0; i < size(); i++)
{
tmp[i] = _start[i];
}
delete[] _start;
_start = tmp;
_finish = _start + len;
_endofstorage = _start + n;
}
}
void resize(size_t n, const T& value = T())
{
if (n <= size())
{
_finish = _start + n;
}
else
{
reserve(n);
while (_finish < _start+n)
{
*_finish = value;
++_finish;
}
}
}
bool empty()const
{
return _start==_finish;
}
T& operator[](size_t pos)
{
return _start[pos];
}
const T& operator[](size_t pos)const
{
return _start[pos];
}
void push_back(const T& x)
{
insert(_finish, x);
}
void pop_back()
{
--_finish;
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endofstorage, v._endofstorage);
}
void insert(iterator pos, const T& x)
{
assert(pos >= _start);
assert(pos <= _finish);
if (_finish == _endofstorage)
{
size_t len = pos - _start;
reserve(capacity() == 0 ? 4 : capacity() * 2);
pos = _start + len;
}
iterator it = _finish;
while (it > pos)
{
*it = *(it-1);
--it;
}
*pos = x;
++_finish;
}
void erase(iterator pos)
{
iterator it = pos;
while (it+1 < _finish)
{
*it = *(it + 1);
it++;
}
--_finish;
}
private:
iterator _start = nullptr;
iterator _finish = nullptr;
iterator _endofstorage = nullptr;
};
template<class T>
void Print_vector(vector<T>& v)
{
for (size_t i = 0; i < v.size(); i++)
{
cout << v[i] <<" ";
}
cout << endl;
}
void test_vector()
{
vector<int> v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);
v1.reserve(100);
//v1.resize(1);
//v1.pop_back();
vector<int> v2(v1);
v1.erase(v1.end());
Print_vector(v1);
cout << v1.capacity() << endl;
v1.swap(v2);
Print_vector(v1);
}
void test_vector1()
{
vector<int> v1(5);
vector<int> v2(v1.begin()+1, v1.end()-1);
Print_vector(v2);
v1 = v2;
Print_vector(v1);
v1.reserve(100);
cout << v1.capacity() << endl;
string str="11111";
vector<string> v3(5,str);
Print_vector(v3);
}
}
#include "vector.h"
int main()
{
bit::test_vector1();
return 0;
}