前情回顾
前面我们我们看了一遍createCaptureSession的过程,知道它的作用是维护会话状态,为后续的捕获请求提供基础,那现在就开始看看setRepeatingRequest,也就是起预览的流程,这个流程是跟配流过程强相关的。
APP 层
既然提到app层,那我们肯定要看下上层如何使用,也就是调用API2的接口的,为了方便描述,还是将完整的打开相机,配流,以及起预览过程代码都写一下,我按顺序摆放了一下,可以直接按顺序看就行,流程一目了然:
// 重要变量需要注意
private CameraDevice mCameraDevice;
private CameraCaptureSession mCaptureSession;
private CaptureRequest.Builder mPreviewRequestBuilder;
// 打开相机
private void openCamera() {
if (mCameraId == null || mCameraManager == null) {
return;
}
try {
// 检查权限
if (ActivityCompat.checkSelfPermission(this, Manifest.permission.CAMERA)
!= PackageManager.PERMISSION_GRANTED) {
return;
}
// 打开相机,传入相机ID、状态回调和后台处理器
mCameraManager.openCamera(mCameraId, mStateCallback, mBackgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
runOnUiThread(() -> Toast.makeText(this, "打开相机失败", Toast.LENGTH_SHORT).show());
}
}
// 相机设备状态回调,处理相机打开、关闭、错误等状态,在成功打开回调方法里开始创建捕获会话
private final CameraDevice.StateCallback mStateCallback = new CameraDevice.StateCallback() {
@Override
public void onOpened(@NonNull CameraDevice camera) {
// 相机成功打开,保存相机设备实例并配置流
mCameraDevice = camera;
createCameraCaptureSession();
}
@Override
public void onDisconnected(@NonNull CameraDevice camera) {
camera.close();
mCameraDevice = null;
}
@Override
public void onError(@NonNull CameraDevice camera, int error) {
camera.close();
mCameraDevice = null;
runOnUiThread(() -> Toast.makeText(Camera2PreviewActivity.this,
"相机打开失败: " + error, Toast.LENGTH_SHORT).show());
}
};
// 创建相机捕获会话(配流过程)
private void createCameraCaptureSession() {
if (mCameraDevice == null || !mTextureView.isAvailable()) {
return;
}
try {
// 获取TextureView的SurfaceTexture并创建Surface
SurfaceTexture surfaceTexture = mTextureView.getSurfaceTexture();
surfaceTexture.setDefaultBufferSize(mPreviewSize.getWidth(), mPreviewSize.getHeight());
Surface previewSurface = new Surface(surfaceTexture);
// 创建预览请求构建器
mPreviewRequestBuilder = mCameraDevice.createCaptureRequest(
CameraDevice.TEMPLATE_PREVIEW);
// 将Surface作为预览的目标(配流:指定数据输出到哪里)
mPreviewRequestBuilder.addTarget(previewSurface);
// 准备输出表面列表(当前只有预览一个流)
List<Surface> outputSurfaces = new ArrayList<>();
outputSurfaces.add(previewSurface);
// 创建相机捕获会话,配置输出流
mCameraDevice.createCaptureSession(outputSurfaces, mSessionCallback, mBackgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
// 捕获会话状态回调,处理会话创建结果
private final CameraCaptureSession.StateCallback mSessionCallback =
new CameraCaptureSession.StateCallback() {
@Override
public void onConfigured(@NonNull CameraCaptureSession session) {
// 会话配置成功,开始预览
mCaptureSession = session;
startPreview();
}
@Override
public void onConfigureFailed(@NonNull CameraCaptureSession session) {
runOnUiThread(() -> Toast.makeText(Camera2PreviewActivity.this,
"预览配置失败", Toast.LENGTH_SHORT).show());
}
};
// 启动预览,这也是这篇文章需要说明的对象
private void startPreview() {
if (mCameraDevice == null || mCaptureSession == null || mPreviewRequestBuilder == null) {
return;
}
try {
// 配置自动对焦模式
mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_MODE,
CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
// 配置自动曝光模式
mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AE_MODE,
CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);
// 发送重复捕获请求以持续预览
mCaptureSession.setRepeatingRequest(mPreviewRequestBuilder.build(),
null, mBackgroundHandler);
runOnUiThread(() -> Toast.makeText(Camera2PreviewActivity.this,
"预览已启动", Toast.LENGTH_SHORT).show());
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
到这里应用层的代码实现已经走完了,接下来就是Framework层代码了
Framework
按惯例,我们需要了解一下什么时候回调的onConfigured
frameworks/base/core/java/android/hardware/camera2/impl/CameraDeviceImpl.java
private void createCaptureSessionInternal(InputConfiguration inputConfig,
List<OutputConfiguration> outputConfigurations,
CameraCaptureSession.StateCallback callback, Executor executor,
int operatingMode, CaptureRequest sessionParams) throws CameraAccessException {
//让我们回顾一下配流过程,先配流,配流成功返回状态
try {
configureSuccess = configureStreamsChecked(inputConfig, outputConfigurations,
operatingMode, sessionParams, createSessionStartTime);
} catch (CameraAccessException e) {
}
// 官方注释引路,说明是在下面代码里面实现了onConfigured回调调用
// Fire onConfigured if configureOutputs succeeded, fire onConfigureFailed otherwise.
// isConstrainedHighSpeed一般都是false,除非开启特殊慢录模式,这
//个我们不讨论,但CameraConstrainedHighSpeedCaptureSessionImpl
//里面也是最终会调用到onConfigured,这里不再赘述,感兴趣的可以自行看下
if (isConstrainedHighSpeed) {
newSession = new CameraConstrainedHighSpeedCaptureSessionImpl(mNextSessionId++,
callback, executor, this, mDeviceExecutor, configureSuccess,
mCharacteristics);
} else {
newSession = new CameraCaptureSessionImpl(mNextSessionId++, input,
callback, executor, this, mDeviceExecutor, configureSuccess);
}
}
可以看到下面是实例化了CameraCaptureSessionImpl,那这里面是怎么调用到onConfigured的呢,接着往下看它的构造函数:
frameworks/base/core/java/android/hardware/camera2/impl/CameraCaptureSessionImpl.java
CameraCaptureSessionImpl(int id, Surface input,
CameraCaptureSession.StateCallback callback, Executor stateExecutor,
android.hardware.camera2.impl.CameraDeviceImpl deviceImpl,
Executor deviceStateExecutor, boolean configureSuccess) {
//那传入的configureSuccess肯定是true啊,那顺理成章就会回调到onConfigured了
if (configureSuccess) {
mStateCallback.onConfigured(this);
if (DEBUG) Log.v(TAG, mIdString + "Created session successfully");
mConfigureSuccess = true;
} else {
mStateCallback.onConfigureFailed(this);
mClosed = true; // do not fire any other callbacks, do not allow any other work
Log.e(TAG, mIdString + "Failed to create capture session; configuration failed");
mConfigureSuccess = false;
}
}
OK,看到这里就知道何时调用到onConfigured,如何调用到onConfigured,并且知道回调给的参数其实就是CameraCaptureSessionImpl,也就是app层提到的mCaptureSession是CameraCaptureSessionImpl实例, 这里我们可以开始我们的主线任务了,在回调到onConfigured之后,就会调用到关键函数setRepeatingRequest,对应app层代码里面的
// 发送重复捕获请求以持续预览
mCaptureSession.setRepeatingRequest(mPreviewRequestBuilder.build(),
null, mBackgroundHandler);
那就继续看下面的代码
frameworks/base/core/java/android/hardware/camera2/impl/CameraCaptureSessionImpl.java
@Override
public int setRepeatingRequest(CaptureRequest request, CaptureCallback callback,
Handler handler) throws CameraAccessException {
checkRepeatingRequest(request);
synchronized (mDeviceImpl.mInterfaceLock) {
checkNotClosed();
handler = checkHandler(handler, callback);
if (DEBUG) {
Log.v(TAG, mIdString + "setRepeatingRequest - request " + request + ", callback " +
callback + " handler" + " " + handler);
}
return addPendingSequence(mDeviceImpl.setRepeatingRequest(request,
createCaptureCallbackProxy(handler, callback), mDeviceExecutor));
}
}
需要注意的是他有一个请求,预览请求相关变量是CameraDevice.TEMPLATE_PREVIEW,前面app层也展现过,想了解可以回顾一下,那继续以主线跳转往下跟踪
/**
* Notify the session that a pending capture sequence has just been queued.
*
* <p>During a shutdown/close, the session waits until all pending sessions are finished
* before taking any further steps to shut down itself.</p>
*
* @see #finishPendingSequence
*/
private int addPendingSequence(int sequenceId) {
mSequenceDrainer.taskStarted(sequenceId);
return sequenceId;
}
到这里咋不按套路出牌了呢,看注释意思是一个待处理的捕获序列刚刚已入队,啥啊,这里我们先放一下,回头看看这具体干啥的,先回头看看上一步是不是漏了什么
return addPendingSequence(mDeviceImpl.setRepeatingRequest(request,
createCaptureCallbackProxy(handler, callback), mDeviceExecutor));
可以看到上一步里面其实传了个看起来像是起预览的操作,只不过是调用mDeviceImpl里面的setRepeatingRequest函数,那我们直接过去看看怎么个事儿
frameworks/base/core/java/android/hardware/camera2/impl/CameraDeviceImpl.java
public int setRepeatingRequest(CaptureRequest request, CaptureCallback callback,
Executor executor) throws CameraAccessException {
List<CaptureRequest> requestList = new ArrayList<CaptureRequest>();
requestList.add(request);
return submitCaptureRequest(requestList, callback, executor, /*streaming*/true);
}
继续
private int submitCaptureRequest(List<CaptureRequest> requestList, CaptureCallback callback,
Executor executor, boolean repeating) throws CameraAccessException {
//这里会看请求是不是带了surface的,没带的会执行报错的,所以app层的addTarget()是必要步骤
// Make sure that there all requests have at least 1 surface; all surfaces are non-null;
for (CaptureRequest request : requestList) {
if (request.getTargets().isEmpty()) {
throw new IllegalArgumentException(
"Each request must have at least one Surface target");
}
for (Surface surface : request.getTargets()) {
if (surface == null) {
throw new IllegalArgumentException("Null Surface targets are not allowed");
}
}
}
//传入的是true,需要先停止前面的repeating
if (repeating) {
stopRepeating();
}
//关键函数,后面继续从这里跟踪起预览过程,这里就开始进入native服务了,不再多解释,
//不了解的话可以重新跟一下前面的文章,我想早点“下班”了,休假咋都在写文章啊我
requestInfo = mRemoteDevice.submitRequestList(requestArray, repeating);
return requestInfo.getRequestId();
}
然后就通过binder调用到这里了
frameworks/av/services/camera/libcameraservice/api2/CameraDeviceClient.cpp
binder::Status CameraDeviceClient::submitRequestList(
const std::vector<hardware::camera2::CaptureRequest>& requests,
bool streaming,
/*out*/
hardware::camera2::utils::SubmitInfo *submitInfo) {
if (streaming) {
//预览环节
err = mDevice->setStreamingRequestList(metadataRequestList, surfaceMapList,
&(submitInfo->mLastFrameNumber));
} else {
//拍照环节
err = mDevice->captureList(metadataRequestList, surfaceMapList,
&(submitInfo->mLastFrameNumber));
}
return res;
}
直接上高速,加速中
frameworks/av/services/camera/libcameraservice/device3/Camera3Device.cpp
status_t Camera3Device::setStreamingRequestList(
const List<const PhysicalCameraSettingsList> &requestsList,
const std::list<const SurfaceMap> &surfaceMaps, int64_t *lastFrameNumber) {
ATRACE_CALL();
return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/true, lastFrameNumber);
}
status_t Camera3Device::submitRequestsHelper(
const List<const PhysicalCameraSettingsList> &requests,
const std::list<const SurfaceMap> &surfaceMaps,
bool repeating,
/*out*/
int64_t *lastFrameNumber) {
if (repeating) {
//预览流程
res = mRequestThread->setRepeatingRequests(requestList, lastFrameNumber);
} else {
//拍照流程
res = mRequestThread->queueRequestList(requestList, lastFrameNumber);
}
return res;
}
继续预览流程
status_t Camera3Device::RequestThread::setRepeatingRequests(
const RequestList &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mRepeatingRequests.clear();
mFirstRepeating = true;
// mRepeatingRequests: 类型为RequestList,预览请求队列,这次请求添加之后,等待后续执行消费
mRepeatingRequests.insert(mRepeatingRequests.begin(),
requests.begin(), requests.end());
unpauseForNewRequests();
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
所以相当于到这里先告一段落了,现在要去跟踪怎么去消费添加到队列的预览请求
frameworks/av/services/camera/libcameraservice/device3/Camera3Device.cpp
bool Camera3Device::RequestThread::threadLoop() {
//省略n行代码,直接找重点
submitRequestSuccess = sendRequestsBatch();
return submitRequestSuccess;
}
然后看sendRequestsBatch对应实现
bool Camera3Device::RequestThread::sendRequestsBatch() {
res = mInterface->processBatchCaptureRequests(requests, &numRequestProcessed);
return true;
}
status_t Camera3Device::HalInterface::processBatchCaptureRequests(
std::vector<camera_capture_request_t*>& requests,/*out*/uint32_t* numRequestProcessed) {
err = mHidlSession->processCaptureRequest(captureRequests, cachesToRemove,
resultCallback);
}
HAL 层
熟悉吧,这是跳转到最终函数
hardware/qcom/camera/msm8998/QCamera2/HAL3/QCamera3HWI.cpp
int QCamera3HardwareInterface::processCaptureRequest(
camera3_capture_request_t *request,
List<InternalRequest> &internallyRequestedStreams)
{
if (mRawDumpChannel) {
rc = mRawDumpChannel->initialize(IS_TYPE_NONE);
if (rc != NO_ERROR) {
LOGE("Error: Raw Dump Channel init failed");
pthread_mutex_unlock(&mMutex);
goto error_exit;
}
}
if (mHdrPlusRawSrcChannel) {
rc = mHdrPlusRawSrcChannel->initialize(IS_TYPE_NONE);
if (rc != NO_ERROR) {
LOGE("Error: HDR+ RAW Source Channel init failed");
pthread_mutex_unlock(&mMutex);
goto error_exit;
}
}
if (mSupportChannel) {
rc = mSupportChannel->initialize(IS_TYPE_NONE);
if (rc < 0) {
LOGE("Support channel initialization failed");
pthread_mutex_unlock(&mMutex);
goto error_exit;
}
}
if (mAnalysisChannel) {
rc = mAnalysisChannel->initialize(IS_TYPE_NONE);
if (rc < 0) {
LOGE("Analysis channel initialization failed");
pthread_mutex_unlock(&mMutex);
goto error_exit;
}
}
if (mDummyBatchChannel) {
rc = mDummyBatchChannel->setBatchSize(mBatchSize);
if (rc < 0) {
LOGE("mDummyBatchChannel setBatchSize failed");
pthread_mutex_unlock(&mMutex);
goto error_exit;
}
rc = mDummyBatchChannel->initialize(IS_TYPE_NONE);
if (rc < 0) {
LOGE("mDummyBatchChannel initialization failed");
pthread_mutex_unlock(&mMutex);
goto error_exit;
}
}
if (mState == CONFIGURED && mChannelHandle) {
//Then start them.
LOGH("Start META Channel");
rc = mMetadataChannel->start();
if (rc < 0) {
LOGE("META channel start failed");
pthread_mutex_unlock(&mMutex);
return rc;
}
if (mAnalysisChannel) {
rc = mAnalysisChannel->start();
if (rc < 0) {
LOGE("Analysis channel start failed");
mMetadataChannel->stop();
pthread_mutex_unlock(&mMutex);
return rc;
}
}
if (mSupportChannel) {
rc = mSupportChannel->start();
if (rc < 0) {
LOGE("Support channel start failed");
mMetadataChannel->stop();
/* Although support and analysis are mutually exclusive today
adding it in anycase for future proofing */
if (mAnalysisChannel) {
mAnalysisChannel->stop();
}
pthread_mutex_unlock(&mMutex);
return rc;
}
for (List<stream_info_t *>::iterator it = mStreamInfo.begin();
it != mStreamInfo.end(); it++) {
QCamera3Channel *channel = (QCamera3Channel *)(*it)->stream->priv;
LOGH("Start Processing Channel mask=%d",
channel->getStreamTypeMask());
rc = channel->start(); //最终在这里开启预览通道
if (rc < 0) {
LOGE("channel start failed");
pthread_mutex_unlock(&mMutex);
return rc;
}
}
}
}
说明一下上面开启的几个辅助通道:
分析通道(Analysis Channel,即代码中的 mAnalysisChannel):用于将相机数据传递给上层进行算法分析(如人脸检测、条码识别等),不直接参与屏幕显示。
元数据通道(Metadata Channel,即 mMetadataChannel):专门处理相机的元数据(如曝光时间、ISO、对焦距离等),用于控制和反馈相机参数。
支持通道(Support Channel,mSupportChannel):辅助功能通道,可能用于特定硬件的扩展功能(如多摄像头协同、特殊模式处理等)。
通道的启动思路:先启动控制 / 辅助通道:确保元数据处理、算法分析等基础能力就绪。
再启动数据流通道,在辅助通道就绪后,启动实际的图像数据传输(如预览、拍照),保证数据处理链路完整。
QCamera3RegularChannel,QCamera3PicChannel这些通道存储在 stream->priv 中,每个通道对应一个具体的相机流(如预览流、拍照流),负责处理实际的图像数据传输(如预览画面、照片数据)
收工!
总结
终于算是告一段落了,后面有时间再优化一下,目前先这样,此文仅仅是了解起预览的过程,再后面就是拍照和录制视频流程了,看了前面的几章,我们基本了解相机子系统了。