一.区间合并
1.AcWing245你能回答这些问题吗


分析:
线段树。维护四个变量,即可实现区间合并。
mx 区间最大连续子段和
mx_l 以区间左端点为左界的最大连续字段和
mx_r 以区间左端点为左界的最大连续字段和
sum 区间和
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f3f;
int n, m;
int ar[500050];
struct node
{
int l, r;
int mx, mx_l, mx_r, sum;
}tree[2000050];
int op, x, y;
void pushup(node &a, node &b, node &c)
{
a.mx = max(max(b.mx, c.mx), b.mx_r + c.mx_l);
a.mx_l = max(b.mx_l, b.sum + c.mx_l);
a.mx_r = max(c.mx_r, c.sum + b.mx_r);
a.sum = b.sum + c.sum;
}
void build(int p, int l, int r)
{
tree[p].l = l, tree[p].r = r;
if(l == r)
{
tree[p].mx = tree[p].mx_l = tree[p].mx_r = tree[p].sum = ar[l];
return ;
}
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid + 1, r);
pushup(tree[p], tree[p<<1], tree[p<<1|1]);
}
node query(int p, int l, int r)
{
if(l <= tree[p].l && tree[p].r <= r) return tree[p];
int mid = (tree[p].l + tree[p].r) >> 1;
if(r <= mid) return query(p<<1, l, r);
else if(l > mid) return query(p<<1|1, l, r);
else
{
node left = query(p<<1, l, r);
node right = query(p<<1|1, l, r);
node res;
pushup(res, left, right);
return res;
}
}
void updata(int p, int x, int y)
{
if(tree[p].l == tree[p].r) tree[p].mx = tree[p].mx_l = tree[p].mx_r = tree[p].sum = y;
else
{
int mid = (tree[p].l + tree[p].r) >> 1;
if(mid >= x) updata(p<<1, x, y);
else updata(p<<1|1, x, y);
pushup(tree[p], tree[p<<1], tree[p<<1|1]);
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) scanf("%d", &ar[i]);
build(1, 1, n);
while(m--)
{
scanf("%d%d%d", &op, &x, &y);
if(op == 1)
{
if(x > y) swap(x, y);
printf("%d\n", query(1, x, y).mx);
}
else updata(1, x, y);
}
return 0;
}
2.Codeforces Round #742 (Div. 2) E. Non-Decreasing Dilemma


题意:
长度为n的数组,q次询问,每次询问三个参数op,x,y
op==1,ar[x]=y;
op==2,查询区间内有多少个不降的子数组。
分析:
同上一个题一样,除了维护询问的属性sum以外,再维护子数组左右边界分别为区间边界时最长的长度len_l,len_r,,以及区间长度len,即可实现区间合并。
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
int n, q;
ll ar[200050];
struct node
{
int l, r;
ll len_l, len_r, sum, len;
// void print()
// {
// cout << l << ' ' << r << ' ' << len_l << ' ' << len_r << ' ' << sum << ' ' << len << '\n';
// }
}tree[800050];
int op;
ll x, y;
ll calc(ll n)
{
return (1ll + n) * n / 2ll;
}
void pushup(node &p, node &le, node &ri)
{
p.l = le.l;
p.r = ri.r;
if(ar[le.r] <= ar[ri.l])
{
p.sum = le.sum + ri.sum - calc(le.len_r) - calc(ri.len_l) + calc(le.len_r + ri.len_l);
if(le.len == le.len_l) p.len_l = le.len + ri.len_l;
else p.len_l = le.len_l;
if(ri.len_r == ri.len) p.len_r = ri.len + le.len_r;
else p.len_r = ri.len_r;
p.len = le.len + ri.len;
}
else
{
p.sum = le.sum + ri.sum;
p.len_l = le.len_l;
p.len_r = ri.len_r;
p.len = le.len + ri.len;
}
}
void pushup(int p)
{
pushup(tree[p], tree[p<<1], tree[p<<1|1]);
}
void build(int p, int l, int r)
{
tree[p].l = l, tree[p].r = r;
if(l == r)
{
tree[p].len_l = tree[p].len_r = tree[p].sum = tree[p].len = 1;
return ;
}
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid + 1, r);
pushup(p);
}
void updata(int p, int pos, ll y)
{
if(tree[p].l == tree[p].r) ar[pos] = y;
else
{
int mid = (tree[p].l + tree[p].r) >> 1;
if(mid >= x) updata(p<<1, pos, y);
else updata(p<<1|1, pos, y);
pushup(p);
}
}
node query(int p, int l, int r)
{
if(l <= tree[p].l && tree[p].r <= r)
{
//tree[p].print();
return tree[p];
}
int mid = (tree[p].l + tree[p].r) >> 1;
if(r <= mid) return query(p<<1, l, r);
else if(l > mid) return query(p<<1|1, l, r);
else
{
node res;
node left = query(p<<1, l, r);
node right = query(p<<1|1, l, r);
pushup(res, left, right);
//res.print();
return res;
}
}
int main()
{
cin >> n >> q;
for(int i = 1; i <= n; ++i) cin >> ar[i];
build(1, 1, n);
// for(int i = 1; i <= n * 4; ++i)
// {
// cout << i << ' ' ;
// tree[i].print();
// }
while(q--)
{
cin >> op >> x >> y;
if(op == 1) updata(1, x, y);
else
{
//query(1, x, y).print();
cout << query(1, x, y).sum << '\n';
}
}
return 0;
}
二.珂朵莉树
牛客练习赛100 E 小红的公倍数(珂朵莉树)


分析:
看题目特征,首先,题目数据随机生成,其次,存在区间推平操作,故可以考虑珂朵莉树。
另外,需要注意 l c m ( a , b ) % m o d ≠ l c m ( a % m o d , b ) lcm(a,b) \% mod \neq lcm(a\%mod, b) lcm(a,b)%mod=lcm(a%mod,b)。故直接维护区间lcm是行不通的,由此我们质因数分解,维护每个质因数在区间内最多出现多少次方。20000以内的质数个数不是很多,不到2300个,再考虑的推平操作,考虑使用珂朵莉树。(线段树的话,由于要开4倍的空间,所以还是有点卡的)
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
typedef vector<int> vv;
#define itt set<node>::iterator
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
const int maxn = 20005;
const ll mod = 1e9 + 7;
int n, q, l, r, num;
ll ar[maxn];
struct node
{
int l, r;
vv vt;
bool operator < (const node &b) const
{
return l < b.l;
}
};
set<node> tree;
bool prime[maxn];
int Prime[maxn];
int pid[maxn];
void make_prime()
{
memset(prime, true, sizeof(prime));
memset(pid, -1, sizeof(pid));
prime[0] = prime[1] = false;
for(int i = 2; i <= maxn; i++)
{
if(prime[i])
{
Prime[num]=i;
pid[i] = num++;
}
for(int j=0; j < num && i * Prime[j] < maxn; j++)
{
prime[i * Prime[j]] = false;
if(!(i % Prime[j]))
break;
}
}
}
ll pow_mod(ll a, ll n)
{
ll ans = 1;
a %= mod;
while(n)
{
if(n & 1) ans = (ans * a) % mod;
a = (a * a) % mod;
n >>= 1;
}
return ans;
}
itt split(int pos)
{
itt it = tree.lower_bound({pos, 0, {}});
if(it != tree.end() && it -> l == pos) return it;
--it;
int l = it -> l;
int r = it -> r;
vector<int> v = it -> vt;
tree.erase(it);
tree.insert({l, pos - 1, v});
return tree.insert({pos, r, v}).first;
}
void solve(int l, int r)
{
itt itr = split(r + 1);
itt itl = split(l);
// cout << itl -> l << ' ' << itl -> r << '\n';
// cout << itr -> l << ' ' << itr -> r << '\n';
vector<int> vt(2300, 0);
for(itt it = itl; it != itr; ++it)
{
//cout << it -> l << ' ' << it -> t << '\n';
for(int i = 0; i < 2300; ++i)
{
vt[i] = max(vt[i], it->vt[i]);
//cout << vt[i] <<
}
}
ll ans = 1;
for(int i = 0; i < 2300; ++i)
{
//cout << i << ' ' << vt[i] << ' ';
ans = (ans * pow_mod(Prime[i], vt[i])) % mod;
//cout << ans << '\n';
}
cout << ans << '\n';
tree.erase(itl, itr);
tree.insert(node{l, r, vt});
}
void print()
{
for(itt it = tree.begin(); it != tree.end(); ++it)
{
cout << it -> l << ' ' << it -> r << '\n';
}
}
signed main()
{
io;
make_prime();
// for(int i = 0; i <= 100; ++i)
// {
// cout << i << ' ' << prime[i] << ' ' << Prime[i] << ' ' << pid[i] << '\n';
// }
cin >> n >> q;
vector<int> vt(2300, 0);
int cnt = 0;
for(int i = 1; i <= n; ++i)
{
cin >> ar[i];
vt.clear();
vt = vector<int>(2300, 0);
for(int j = 2; j * j <= ar[i]; ++j)
{
cnt = 0;
while(ar[i] % j == 0)
{
++cnt;
ar[i] /= j;
}
if(pid[j] == -1) continue;
vt[pid[j]] += cnt;
}
if(ar[i] > 1) ++vt[pid[ar[i]]];
tree.insert(node{i, i, vt});
}
while(q--)
{
cin >> l >> r;
solve(l, r);
//print();
}
return 0;
}
三.区间操作
1.2022 ACM 湖北省赛 L (线段树)
题意:
输入长度为n的数组,q次询问,n个数字每个数字有两个权值,权值ar[i] (1 <= ar[i] <= 10^8),s[i](s[i]=0/1)。询问分为一下四种。
1 x : 将s[x]变成0,保证原来的 s[x] = 1
2 x : 将s[x]变成1,保证原来的 s[x] = 0
3 L R x : 给区间 [l,r] 中所有的s[i]=1的ar[i]都加上一个数
4 L R : 输出区间 [l,r] 中的 ar[i] 的和
分析:
维护 ∑ a r [ i ] \sum ar[i] ∑ar[i]和 ∑ s [ i ] \sum s[i] ∑s[i]即可,由于是区间修改,所以还需要懒标记。
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
const int maxn = 1e5 + 5;
int n, m;
int ar[maxn];
bool s[maxn];
struct node
{
int l, r;
int lazy_sum;
int cnt, sum;
int mid()
{
return (l + r) >> 1;
}
void print()
{
cout << l << ' ' << r << ' ' << lazy_sum << ' ' << cnt << ' ' << sum << '\n';
}
} tree[maxn<<2];
int op, l, r, x;
void pushup(int p)
{
tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
tree[p].cnt = tree[p<<1].cnt + tree[p<<1|1].cnt;
}
void pushdown(int p)
{
tree[p<<1].sum += tree[p<<1].cnt * tree[p].lazy_sum;
tree[p<<1].lazy_sum += tree[p].lazy_sum;
tree[p<<1|1].sum += tree[p<<1|1].cnt * tree[p].lazy_sum;
tree[p<<1|1].lazy_sum += tree[p].lazy_sum;
tree[p].lazy_sum = 0;
}
void build(int p, int l, int r)
{
tree[p].l = l;
tree[p].r = r;
tree[p].lazy_sum = 0;
if(l == r)
{
tree[p].sum = ar[l];
tree[p].cnt = s[l];
return ;
}
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid + 1, r);
pushup(p);
}
void updata1(int p, int pos)
{
if(tree[p].l == tree[p].r)
{
tree[p].cnt ^= 1;
return ;
}
if(tree[p].lazy_sum) pushdown(p);
int mid = (tree[p].l + tree[p].r) >> 1;
if(pos <= mid) updata1(p<<1, pos);
else updata1(p<<1|1, pos);
pushup(p);
}
void updata2(int p, int l, int r, int x)
{
if(l <= tree[p].l && tree[p].r <= r)
{
tree[p].sum += tree[p].cnt * x;
tree[p].lazy_sum += x;
return ;
}
if(tree[p].lazy_sum) pushdown(p);
int mid = (tree[p].l + tree[p].r) >> 1;
if(l <= mid) updata2(p<<1, l, r, x);
if(r > mid) updata2(p<<1|1, l, r, x);
pushup(p);
}
ll query(int p, int l, int r)
{
if(l <= tree[p].l && tree[p].r <= r) return tree[p].sum;
if(tree[p].lazy_sum) pushdown(p);
int mid = (tree[p].l + tree[p].r) >> 1;
ll res = 0;
if(l <= mid) res = query(p<<1, l, r);
if(r > mid) res += query(p<<1|1, l, r);
return res;
}
signed main()
{
io;
cin >> n >> m;
for(int i = 1; i <= n; ++i) cin >> ar[i];
for(int i = 1; i <= n; ++i) cin >> s[i];
build(1, 1, n);
// for(int i = 1; i <= 3 * n; ++i)
// {
// cout << i << ' ';
// tree[i].print();
// }
while(m--)
{
cin >> op;
if(op == 1 || op == 2)
{
cin >> x;
updata1(1, x);
// for(int i = 1; i <= 7; ++i)
// {
// cout << i << ' ';
// tree[i].print();
// }
}
else if(op == 3)
{
cin >> l >> r >> x;
updata2(1, l, r, x);
// for(int i = 1; i <= 7; ++i)
// {
// cout << i << ' ';
// tree[i].print();
// }
}
else
{
cin >> l >> r;
cout << query(1, l, r) << '\n';
// for(int i = 1; i <= 7; ++i)
// {
// cout << i << ' ';
// tree[i].print();
// }
}
}
return 0;
}
2.2022牛客寒假算法基础集训营4 B-进制 (线段树)



分析:
维护区间最大值,和作为i进制数的大小即可维护。
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define endl '\n'
const int maxn = 1e5 + 5;
const ll mod = 1e9 + 7;
const ll inf = 0x3f3f3f3f;
struct node
{
int l, r, mx;
int ar[12];
int mid()
{
return (l + r) >> 1;
}
void print()
{
cout << l << ' ' << r << ' ' << mx << '\n';
for(int i = 1; i <= 10; ++i) cout << ar[i] << ' ';
cout << '\n';
}
}tree[maxn<<2];
int n, q, op, x, y;
string s;
node ans;
ll pow_mod(ll a, ll n)
{
ll ans = 1;
a %= mod;
while(n)
{
if(n & 1) ans = (ans * a) % mod;
a = (a * a) % mod;
n >>= 1;
}
return ans;
}
void pushup(node &p, node &le, node &ri)
{
p.mx = max(le.mx, ri.mx);
p.l = le.l;
p.r = ri.r;
for(int i = 1; i <= 10; ++i)
{
if(i <= p.mx) p.ar[i] = inf;
else p.ar[i] = ((le.ar[i] * pow_mod(i, ri.r - ri.l + 1)) % mod + ri.ar[i]) % mod;
}
}
void pushup(int p)
{
pushup(tree[p], tree[p<<1], tree[p<<1|1]);
}
void build(int p, int l, int r)
{
tree[p].l = l;
tree[p].r = r;
if(l == r)
{
tree[p].mx = s[l] - '0';
for(int i = 1; i <= 10; ++i)
{
if(i <= tree[p].mx) tree[p].ar[i] = inf;
else tree[p].ar[i] = tree[p].mx;
}
return ;
}
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid + 1, r);
pushup(p);
}
void updata(int p, int x, int y)
{
if(tree[p].l == tree[p].r)
{
tree[p].mx = y;
for(int i = 1; i <= 10; ++i)
{
if(i <= tree[p].mx) tree[p].ar[i] = inf;
else tree[p].ar[i] = tree[p].mx;
}
return ;
}
int mid = tree[p].mid();
if(x <= mid) updata(p<<1, x, y);
else updata(p<<1|1, x, y);
pushup(p);
}
node query(int p, int l, int r)
{
if(l <= tree[p].l && tree[p].r <= r) return tree[p];
int mid = tree[p].mid();
if(mid >= r) return query(p<<1, l, r);
else if(mid < l) return query(p<<1|1, l, r);
else
{
node res;
node le = query(p<<1, l, r);
node ri = query(p<<1|1, l, r);
pushup(res, le, ri);
return res;
}
}
signed main()
{
io;
cin >> n >> q;
cin >> s;
s = " " + s;
build(1, 1, n);
// for(int i = 1; i <= 9; ++i)
// {
// cout << i << ' ';
// tree[i].print();
// }
while(q--)
{
cin >> op >> x >> y;
if(op == 1) updata(1, x, y);
else
{
ans = query(1, x, y);
cout << ans.ar[ans.mx + 1] << '\n';
}
}
return 0;
}
3.Codeforces Round #254 (Div. 1) C. DZY Loves Colors (线段树)

分析:
维护区间权值和,区间的颜色,如果区间内颜色统一则区间修改,使用lazy标记,不统一则暴力单点修改。
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define endl '\n'
#define itt set<node>::iterator
const int maxn = 1e5 + 5;
const ll mod = 1e9 + 7;
const ll inf = 0x3f3f3f3f;
struct node
{
int l, r;
int color, sum, cnt;
int lazy;
bool flag;
int mid()
{
return (l + r) >> 1;
}
void print()
{
cout << l << ' ' << r << ' ' << color << ' ' << flag << ' ' << sum << ' '<< cnt << ' ' << lazy << '\n';
}
}tree[maxn<<2];
int n, m, op, l, r, x;
void pushup(int p)
{
tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
tree[p].flag = false;
tree[p].color = 0;
if(tree[p<<1].flag && tree[p<<1|1].flag && tree[p<<1].color == tree[p<<1|1].color)
{
tree[p].flag = true;
tree[p].color = tree[p<<1].color;
}
}
void pushdown(int p)
{
tree[p<<1].sum += tree[p<<1].cnt * tree[p].lazy;
tree[p<<1].lazy += tree[p].lazy;
tree[p<<1].color = tree[p].color;
tree[p<<1|1].sum += tree[p<<1|1].cnt * tree[p].lazy;
tree[p<<1|1].lazy += tree[p].lazy;
tree[p<<1|1].color = tree[p].color;
tree[p].lazy = 0;
}
void build(int p, int l, int r)
{
tree[p].l = l;
tree[p].r = r;
tree[p].cnt = r - l + 1;
tree[p].lazy = 0;
if(l == r)
{
tree[p].color = l;
tree[p].flag = true;
tree[p].sum = 0;
return ;
}
int mid = tree[p].mid();
build(p<<1, l, mid);
build(p<<1|1, mid + 1, r);
pushup(p);
}
void updata(int p, int l, int r, int x)
{
if (tree[p].l > r || tree[p].r < l) return;
if(l <= tree[p].l && tree[p].r <= r && tree[p].flag)
{
tree[p].sum += tree[p].cnt * abs(tree[p].color - x);
tree[p].lazy += abs(tree[p].color - x);
tree[p].color = x;
return ;
}
if(tree[p].lazy) pushdown(p);
updata(p<<1, l, r, x);
updata(p<<1|1, l, r, x);
pushup(p);
}
ll query(int p, int l, int r)
{
if(tree[p].l > r || tree[p].r < l) return 0;
if(l <= tree[p].l && tree[p].r <= r) return tree[p].sum;
if(tree[p].lazy) pushdown(p);
return query(p<<1, l, r) + query(p<<1|1, l, r);
}
signed main()
{
io;
cin >> n >> m;
build(1, 1, n);
while(m--)
{
cin >> op;
if(op == 1)
{
cin >> l >> r >> x;
updata(1, l, r, x);
}
else
{
cin >> l >> r;
cout << query(1, l, r) << '\n';
}
}
return 0;
}