有三个线程T1,T2,T3,如何保证顺序执行

发布于:2024-06-18 ⋅ 阅读:(130) ⋅ 点赞:(0)

1. 使用 join 方法

通过使用 Thread.join 方法,可以确保一个线程在另一个线程完成后再开始执行。

public class JoinExample {
    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            System.out.println("T1 is running");
        });

        Thread t2 = new Thread(() -> {
            try {
                t1.join();
                System.out.println("T2 is running");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        Thread t3 = new Thread(() -> {
            try {
                t2.join();
                System.out.println("T3 is running");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        t1.start();
        t2.start();
        t3.start();
    }
}

2. 使用 CountDownLatch

通过使用 CountDownLatch,可以确保线程按顺序执行。

import java.util.concurrent.CountDownLatch;

public class CountDownLatchExample {
    public static void main(String[] args) {
        CountDownLatch latch1 = new CountDownLatch(1);
        CountDownLatch latch2 = new CountDownLatch(1);

        Thread t1 = new Thread(() -> {
            System.out.println("T1 is running");
            latch1.countDown();
        });

        Thread t2 = new Thread(() -> {
            try {
                latch1.await();
                System.out.println("T2 is running");
                latch2.countDown();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        Thread t3 = new Thread(() -> {
            try {
                latch2.await();
                System.out.println("T3 is running");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        t1.start();
        t2.start();
        t3.start();
    }
}

3. 使用 Semaphore

使用 Semaphore 可以控制线程的执行顺序。

import java.util.concurrent.Semaphore;

public class SemaphoreExample {
    public static void main(String[] args) {
        Semaphore sem1 = new Semaphore(0);
        Semaphore sem2 = new Semaphore(0);

        Thread t1 = new Thread(() -> {
            System.out.println("T1 is running");
            sem1.release();
        });

        Thread t2 = new Thread(() -> {
            try {
                sem1.acquire();
                System.out.println("T2 is running");
                sem2.release();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        Thread t3 = new Thread(() -> {
            try {
                sem2.acquire();
                System.out.println("T3 is running");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        t1.start();
        t2.start();
        t3.start();
    }
}

4. 使用 ReentrantLock 和 Condition

使用 ReentrantLock 和 Condition 可以更细粒度地控制线程的执行顺序。

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockConditionExample {
    private static final Lock lock = new ReentrantLock();
    private static final Condition condition1 = lock.newCondition();
    private static final Condition condition2 = lock.newCondition();
    private static boolean t1Finished = false;
    private static boolean t2Finished = false;

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            lock.lock();
            try {
                System.out.println("T1 is running");
                t1Finished = true;
                condition1.signal();
            } finally {
                lock.unlock();
            }
        });

        Thread t2 = new Thread(() -> {
            lock.lock();
            try {
                while (!t1Finished) {
                    condition1.await();
                }
                System.out.println("T2 is running");
                t2Finished = true;
                condition2.signal();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        });

        Thread t3 = new Thread(() -> {
            lock.lock();
            try {
                while (!t2Finished) {
                    condition2.await();
                }
                System.out.println("T3 is running");
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        });

        t1.start();
        t2.start();
        t3.start();
    }
}

5. 使用 BlockingQueue

通过使用 BlockingQueue 可以控制线程的执行顺序。

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class BlockingQueueExample {
    public static void main(String[] args) {
        BlockingQueue<String> queue1 = new ArrayBlockingQueue<>(1);
        BlockingQueue<String> queue2 = new ArrayBlockingQueue<>(1);

        Thread t1 = new Thread(() -> {
            System.out.println("T1 is running");
            try {
                queue1.put("T1 done");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        Thread t2 = new Thread(() -> {
            try {
                queue1.take();
                System.out.println("T2 is running");
                queue2.put("T2 done");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        Thread t3 = new Thread(() -> {
            try {
                queue2.take();
                System.out.println("T3 is running");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        t1.start();
        t2.start();
        t3.start();
    }
}

这些方法都可以确保线程按指定顺序执行,选择哪种方法取决于具体的使用场景和需求。


网站公告

今日签到

点亮在社区的每一天
去签到